Spaces:
Sleeping
Sleeping
| import os | |
| import sys | |
| import numpy as np | |
| import pandas as pd | |
| import sympy | |
| from sympy import sympify, lambdify | |
| import subprocess | |
| import tempfile | |
| import shutil | |
| from pathlib import Path | |
| from datetime import datetime | |
| import warnings | |
| from multiprocessing import cpu_count | |
| def install(julia_project=None): | |
| import julia | |
| julia.install() | |
| julia_project = _get_julia_project(julia_project) | |
| from julia import Pkg | |
| Pkg.activate(f"{_escape_filename(julia_project)}") | |
| Pkg.instantiate() | |
| Pkg.update() | |
| Pkg.precompile() | |
| Main = None | |
| global_state = dict( | |
| equation_file="hall_of_fame.csv", | |
| n_features=None, | |
| variable_names=[], | |
| extra_sympy_mappings={}, | |
| extra_torch_mappings={}, | |
| extra_jax_mappings={}, | |
| output_jax_format=False, | |
| output_torch_format=False, | |
| multioutput=False, | |
| nout=1, | |
| selection=None, | |
| raw_julia_output=None, | |
| ) | |
| already_ran = False | |
| sympy_mappings = { | |
| "div": lambda x, y: x / y, | |
| "mult": lambda x, y: x * y, | |
| "sqrt_abs": lambda x: sympy.sqrt(abs(x)), | |
| "square": lambda x: x ** 2, | |
| "cube": lambda x: x ** 3, | |
| "plus": lambda x, y: x + y, | |
| "sub": lambda x, y: x - y, | |
| "neg": lambda x: -x, | |
| "pow": lambda x, y: abs(x) ** y, | |
| "cos": sympy.cos, | |
| "sin": sympy.sin, | |
| "tan": sympy.tan, | |
| "cosh": sympy.cosh, | |
| "sinh": sympy.sinh, | |
| "tanh": sympy.tanh, | |
| "exp": sympy.exp, | |
| "acos": sympy.acos, | |
| "asin": sympy.asin, | |
| "atan": sympy.atan, | |
| "acosh": lambda x: sympy.acosh(abs(x) + 1), | |
| "acosh_abs": lambda x: sympy.acosh(abs(x) + 1), | |
| "asinh": sympy.asinh, | |
| "atanh": lambda x: sympy.atanh(sympy.Mod(x + 1, 2) - 1), | |
| "atanh_clip": lambda x: sympy.atanh(sympy.Mod(x + 1, 2) - 1), | |
| "abs": abs, | |
| "mod": sympy.Mod, | |
| "erf": sympy.erf, | |
| "erfc": sympy.erfc, | |
| "log_abs": lambda x: sympy.log(abs(x)), | |
| "log10_abs": lambda x: sympy.log(abs(x), 10), | |
| "log2_abs": lambda x: sympy.log(abs(x), 2), | |
| "log1p_abs": lambda x: sympy.log(abs(x) + 1), | |
| "floor": sympy.floor, | |
| "ceil": sympy.ceiling, | |
| "sign": sympy.sign, | |
| "gamma": sympy.gamma, | |
| } | |
| def pysr( | |
| X, | |
| y, | |
| weights=None, | |
| binary_operators=None, | |
| unary_operators=None, | |
| procs=cpu_count(), | |
| loss="L2DistLoss()", | |
| populations=20, | |
| niterations=100, | |
| ncyclesperiteration=300, | |
| alpha=0.1, | |
| annealing=False, | |
| fractionReplaced=0.10, | |
| fractionReplacedHof=0.10, | |
| npop=1000, | |
| parsimony=1e-4, | |
| migration=True, | |
| hofMigration=True, | |
| shouldOptimizeConstants=True, | |
| topn=10, | |
| weightAddNode=1, | |
| weightInsertNode=3, | |
| weightDeleteNode=3, | |
| weightDoNothing=1, | |
| weightMutateConstant=10, | |
| weightMutateOperator=1, | |
| weightRandomize=1, | |
| weightSimplify=0.01, | |
| perturbationFactor=1.0, | |
| extra_sympy_mappings=None, | |
| extra_torch_mappings=None, | |
| extra_jax_mappings=None, | |
| equation_file=None, | |
| verbosity=1e9, | |
| progress=None, | |
| maxsize=20, | |
| fast_cycle=False, | |
| maxdepth=None, | |
| variable_names=None, | |
| batching=False, | |
| batchSize=50, | |
| select_k_features=None, | |
| warmupMaxsizeBy=0.0, | |
| constraints=None, | |
| useFrequency=True, | |
| tempdir=None, | |
| delete_tempfiles=True, | |
| julia_project=None, | |
| update=True, | |
| temp_equation_file=False, | |
| output_jax_format=False, | |
| output_torch_format=False, | |
| optimizer_algorithm="BFGS", | |
| optimizer_nrestarts=3, | |
| optimize_probability=1.0, | |
| optimizer_iterations=10, | |
| tournament_selection_n=10, | |
| tournament_selection_p=1.0, | |
| denoise=False, | |
| Xresampled=None, | |
| precision=32, | |
| multithreading=None, | |
| ): | |
| """Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i. | |
| Note: most default parameters have been tuned over several example | |
| equations, but you should adjust `niterations`, | |
| `binary_operators`, `unary_operators` to your requirements. | |
| You can view more detailed explanations of the options on the | |
| [options page](https://pysr.readthedocs.io/en/latest/docs/options/) of the documentation. | |
| :param X: 2D array. Rows are examples, columns are features. If pandas DataFrame, the columns are used for variable names (so make sure they don't contain spaces). | |
| :type X: np.ndarray/pandas.DataFrame | |
| :param y: 1D array (rows are examples) or 2D array (rows are examples, columns are outputs). Putting in a 2D array will trigger a search for equations for each feature of y. | |
| :type y: np.ndarray | |
| :param weights: same shape as y. Each element is how to weight the mean-square-error loss for that particular element of y. | |
| :type weights: np.ndarray | |
| :param binary_operators: List of strings giving the binary operators in Julia's Base. Default is ["+", "-", "*", "/",]. | |
| :type binary_operators: list | |
| :param unary_operators: Same but for operators taking a single scalar. Default is []. | |
| :type unary_operators: list | |
| :param procs: Number of processes (=number of populations running). | |
| :type procs: int | |
| :param loss: String of Julia code specifying the loss function. Can either be a loss from LossFunctions.jl, or your own loss written as a function. Examples of custom written losses include: `myloss(x, y) = abs(x-y)` for non-weighted, or `myloss(x, y, w) = w*abs(x-y)` for weighted. Among the included losses, these are as follows. Regression: `LPDistLoss{P}()`, `L1DistLoss()`, `L2DistLoss()` (mean square), `LogitDistLoss()`, `HuberLoss(d)`, `L1EpsilonInsLoss(ϵ)`, `L2EpsilonInsLoss(ϵ)`, `PeriodicLoss(c)`, `QuantileLoss(τ)`. Classification: `ZeroOneLoss()`, `PerceptronLoss()`, `L1HingeLoss()`, `SmoothedL1HingeLoss(γ)`, `ModifiedHuberLoss()`, `L2MarginLoss()`, `ExpLoss()`, `SigmoidLoss()`, `DWDMarginLoss(q)`. | |
| :type loss: str | |
| :param populations: Number of populations running. | |
| :type populations: int | |
| :param niterations: Number of iterations of the algorithm to run. The best equations are printed, and migrate between populations, at the end of each. | |
| :type niterations: int | |
| :param ncyclesperiteration: Number of total mutations to run, per 10 samples of the population, per iteration. | |
| :type ncyclesperiteration: int | |
| :param alpha: Initial temperature. | |
| :type alpha: float | |
| :param annealing: Whether to use annealing. You should (and it is default). | |
| :type annealing: bool | |
| :param fractionReplaced: How much of population to replace with migrating equations from other populations. | |
| :type fractionReplaced: float | |
| :param fractionReplacedHof: How much of population to replace with migrating equations from hall of fame. | |
| :type fractionReplacedHof: float | |
| :param npop: Number of individuals in each population | |
| :type npop: int | |
| :param parsimony: Multiplicative factor for how much to punish complexity. | |
| :type parsimony: float | |
| :param migration: Whether to migrate. | |
| :type migration: bool | |
| :param hofMigration: Whether to have the hall of fame migrate. | |
| :type hofMigration: bool | |
| :param shouldOptimizeConstants: Whether to numerically optimize constants (Nelder-Mead/Newton) at the end of each iteration. | |
| :type shouldOptimizeConstants: bool | |
| :param topn: How many top individuals migrate from each population. | |
| :type topn: int | |
| :param perturbationFactor: Constants are perturbed by a max factor of (perturbationFactor*T + 1). Either multiplied by this or divided by this. | |
| :type perturbationFactor: float | |
| :param weightAddNode: Relative likelihood for mutation to add a node | |
| :type weightAddNode: float | |
| :param weightInsertNode: Relative likelihood for mutation to insert a node | |
| :type weightInsertNode: float | |
| :param weightDeleteNode: Relative likelihood for mutation to delete a node | |
| :type weightDeleteNode: float | |
| :param weightDoNothing: Relative likelihood for mutation to leave the individual | |
| :type weightDoNothing: float | |
| :param weightMutateConstant: Relative likelihood for mutation to change the constant slightly in a random direction. | |
| :type weightMutateConstant: float | |
| :param weightMutateOperator: Relative likelihood for mutation to swap an operator. | |
| :type weightMutateOperator: float | |
| :param weightRandomize: Relative likelihood for mutation to completely delete and then randomly generate the equation | |
| :type weightRandomize: float | |
| :param weightSimplify: Relative likelihood for mutation to simplify constant parts by evaluation | |
| :type weightSimplify: float | |
| :param equation_file: Where to save the files (.csv separated by |) | |
| :type equation_file: str | |
| :param verbosity: What verbosity level to use. 0 means minimal print statements. | |
| :type verbosity: int | |
| :param progress: Whether to use a progress bar instead of printing to stdout. | |
| :type progress: bool | |
| :param maxsize: Max size of an equation. | |
| :type maxsize: int | |
| :param maxdepth: Max depth of an equation. You can use both maxsize and maxdepth. maxdepth is by default set to = maxsize, which means that it is redundant. | |
| :type maxdepth: int | |
| :param fast_cycle: (experimental) - batch over population subsamples. This is a slightly different algorithm than regularized evolution, but does cycles 15% faster. May be algorithmically less efficient. | |
| :type fast_cycle: bool | |
| :param variable_names: a list of names for the variables, other than "x0", "x1", etc. | |
| :type variable_names: list | |
| :param batching: whether to compare population members on small batches during evolution. Still uses full dataset for comparing against hall of fame. | |
| :type batching: bool | |
| :param batchSize: the amount of data to use if doing batching. | |
| :type batchSize: int | |
| :param select_k_features: whether to run feature selection in Python using random forests, before passing to the symbolic regression code. None means no feature selection; an int means select that many features. | |
| :type select_k_features: None/int | |
| :param warmupMaxsizeBy: whether to slowly increase max size from a small number up to the maxsize (if greater than 0). If greater than 0, says the fraction of training time at which the current maxsize will reach the user-passed maxsize. | |
| :type warmupMaxsizeBy: float | |
| :param constraints: dictionary of int (unary) or 2-tuples (binary), this enforces maxsize constraints on the individual arguments of operators. E.g., `'pow': (-1, 1)` says that power laws can have any complexity left argument, but only 1 complexity exponent. Use this to force more interpretable solutions. | |
| :type constraints: dict | |
| :param useFrequency: whether to measure the frequency of complexities, and use that instead of parsimony to explore equation space. Will naturally find equations of all complexities. | |
| :type useFrequency: bool | |
| :param tempdir: directory for the temporary files | |
| :type tempdir: str/None | |
| :param delete_tempfiles: whether to delete the temporary files after finishing | |
| :type delete_tempfiles: bool | |
| :param julia_project: a Julia environment location containing a Project.toml (and potentially the source code for SymbolicRegression.jl). Default gives the Python package directory, where a Project.toml file should be present from the install. | |
| :type julia_project: str/None | |
| :param update: Whether to automatically update Julia packages. | |
| :type update: bool | |
| :param temp_equation_file: Whether to put the hall of fame file in the temp directory. Deletion is then controlled with the delete_tempfiles argument. | |
| :type temp_equation_file: bool | |
| :param output_jax_format: Whether to create a 'jax_format' column in the output, containing jax-callable functions and the default parameters in a jax array. | |
| :type output_jax_format: bool | |
| :param output_torch_format: Whether to create a 'torch_format' column in the output, containing a torch module with trainable parameters. | |
| :type output_torch_format: bool | |
| :param tournament_selection_n: Number of expressions to consider in each tournament. | |
| :type tournament_selection_n: int | |
| :param tournament_selection_p: Probability of selecting the best expression in each tournament. The probability will decay as p*(1-p)^n for other expressions, sorted by loss. | |
| :type tournament_selection_p: float | |
| :param denoise: Whether to use a Gaussian Process to denoise the data before inputting to PySR. Can help PySR fit noisy data. | |
| :type denoise: bool | |
| :param precision: What precision to use for the data. By default this is 32 (float32), but you can select 64 or 16 as well. | |
| :type precision: int | |
| :param multithreading: Use multithreading instead of distributed backend. Default is yes. Using procs=0 will turn off both. | |
| :type multithreading: bool | |
| :returns: Results dataframe, giving complexity, MSE, and equations (as strings), as well as functional forms. If list, each element corresponds to a dataframe of equations for each output. | |
| :type: pd.DataFrame/list | |
| """ | |
| global already_ran | |
| if binary_operators is None: | |
| binary_operators = "+ * - /".split(" ") | |
| if unary_operators is None: | |
| unary_operators = [] | |
| if extra_sympy_mappings is None: | |
| extra_sympy_mappings = {} | |
| if variable_names is None: | |
| variable_names = [] | |
| if constraints is None: | |
| constraints = {} | |
| if multithreading is None: | |
| # Default is multithreading=True, unless explicitly set, | |
| # or procs is set to 0 (serial mode). | |
| multithreading = procs != 0 | |
| global Main | |
| if Main is None: | |
| if multithreading: | |
| os.environ["JULIA_NUM_THREADS"] = str(procs) | |
| from julia.core import JuliaInfo | |
| info = JuliaInfo.load(julia="julia") | |
| if not info.is_pycall_built(): | |
| raise ImportError( | |
| """ | |
| Required dependencies are not installed or built. Run the following code in the Python REPL: | |
| >>> import pysr | |
| >>> pysr.install()""" | |
| ) | |
| from julia import Main | |
| buffer_available = "buffer" in sys.stdout.__dir__() | |
| if progress is not None: | |
| if progress and not buffer_available: | |
| warnings.warn( | |
| "Note: it looks like you are running in Jupyter. The progress bar will be turned off." | |
| ) | |
| progress = False | |
| else: | |
| progress = buffer_available | |
| assert optimizer_algorithm in ["NelderMead", "BFGS"] | |
| assert tournament_selection_n < npop | |
| if isinstance(X, pd.DataFrame): | |
| variable_names = list(X.columns) | |
| X = np.array(X) | |
| if len(X.shape) == 1: | |
| X = X[:, None] | |
| if len(variable_names) == 0: | |
| variable_names = [f"x{i}" for i in range(X.shape[1])] | |
| if extra_jax_mappings is not None: | |
| for value in extra_jax_mappings.values(): | |
| if not isinstance(value, str): | |
| raise NotImplementedError( | |
| "extra_jax_mappings must have keys that are strings! e.g., {sympy.sqrt: 'jnp.sqrt'}." | |
| ) | |
| if extra_torch_mappings is not None: | |
| for value in extra_jax_mappings.values(): | |
| if not callable(value): | |
| raise NotImplementedError( | |
| "extra_torch_mappings must be callable functions! e.g., {sympy.sqrt: torch.sqrt}." | |
| ) | |
| use_custom_variable_names = len(variable_names) != 0 | |
| _check_assertions( | |
| X, | |
| binary_operators, | |
| unary_operators, | |
| use_custom_variable_names, | |
| variable_names, | |
| weights, | |
| y, | |
| ) | |
| if len(X) > 10000 and not batching: | |
| warnings.warn( | |
| "Note: you are running with more than 10,000 datapoints. You should consider turning on batching (https://pysr.readthedocs.io/en/latest/docs/options/#batching). You should also reconsider if you need that many datapoints. Unless you have a large amount of noise (in which case you should smooth your dataset first), generally < 10,000 datapoints is enough to find a functional form with symbolic regression. More datapoints will lower the search speed." | |
| ) | |
| if maxsize > 40: | |
| warnings.warn( | |
| "Note: Using a large maxsize for the equation search will be exponentially slower and use significant memory. You should consider turning `useFrequency` to False, and perhaps use `warmupMaxsizeBy`." | |
| ) | |
| if maxsize < 7: | |
| raise NotImplementedError("PySR requires a maxsize of at least 7") | |
| X, variable_names, selection = _handle_feature_selection( | |
| X, select_k_features, use_custom_variable_names, variable_names, y | |
| ) | |
| if maxdepth is None: | |
| maxdepth = maxsize | |
| if isinstance(binary_operators, str): | |
| binary_operators = [binary_operators] | |
| if isinstance(unary_operators, str): | |
| unary_operators = [unary_operators] | |
| if len(y.shape) == 1 or (len(y.shape) == 2 and y.shape[1] == 1): | |
| multioutput = False | |
| nout = 1 | |
| y = y.reshape(-1) | |
| elif len(y.shape) == 2: | |
| multioutput = True | |
| nout = y.shape[1] | |
| else: | |
| raise NotImplementedError("y shape not supported!") | |
| if denoise: | |
| if weights is not None: | |
| raise NotImplementedError( | |
| "No weights for denoising - the weights are learned." | |
| ) | |
| if Xresampled is not None and selection is not None: | |
| # Select among only the selected features: | |
| Xresampled = Xresampled[:, selection] | |
| if multioutput: | |
| y = np.stack( | |
| [_denoise(X, y[:, i], Xresampled=Xresampled)[1] for i in range(nout)], | |
| axis=1, | |
| ) | |
| if Xresampled is not None: | |
| X = Xresampled | |
| else: | |
| X, y = _denoise(X, y, Xresampled=Xresampled) | |
| julia_project = _get_julia_project(julia_project) | |
| tmpdir = Path(tempfile.mkdtemp(dir=tempdir)) | |
| if temp_equation_file: | |
| equation_file = tmpdir / "hall_of_fame.csv" | |
| elif equation_file is None: | |
| date_time = datetime.now().strftime("%Y-%m-%d_%H%M%S.%f")[:-3] | |
| equation_file = "hall_of_fame_" + date_time + ".csv" | |
| _create_inline_operators( | |
| binary_operators=binary_operators, unary_operators=unary_operators | |
| ) | |
| _handle_constraints( | |
| binary_operators=binary_operators, | |
| unary_operators=unary_operators, | |
| constraints=constraints, | |
| ) | |
| una_constraints = [constraints[op] for op in unary_operators] | |
| bin_constraints = [constraints[op] for op in binary_operators] | |
| try: | |
| term_width = shutil.get_terminal_size().columns | |
| except: | |
| _, term_width = subprocess.check_output(["stty", "size"]).split() | |
| if not already_ran: | |
| from julia import Pkg | |
| Pkg.activate(f"{_escape_filename(julia_project)}") | |
| if update: | |
| try: | |
| Pkg.resolve() | |
| except RuntimeError as e: | |
| raise ImportError( | |
| f""" | |
| Required dependencies are not installed or built. Run the following code in the Python REPL: | |
| >>> import pysr | |
| >>> pysr.install() | |
| Tried to activate project {julia_project} but failed.""" | |
| ) from e | |
| Main.eval("using SymbolicRegression") | |
| Main.plus = Main.eval("(+)") | |
| Main.sub = Main.eval("(-)") | |
| Main.mult = Main.eval("(*)") | |
| Main.pow = Main.eval("(^)") | |
| Main.div = Main.eval("(/)") | |
| Main.custom_loss = Main.eval(loss) | |
| mutationWeights = [ | |
| float(weightMutateConstant), | |
| float(weightMutateOperator), | |
| float(weightAddNode), | |
| float(weightInsertNode), | |
| float(weightDeleteNode), | |
| float(weightSimplify), | |
| float(weightRandomize), | |
| float(weightDoNothing), | |
| ] | |
| options = Main.Options( | |
| binary_operators=Main.eval(str(tuple(binary_operators)).replace("'", "")), | |
| unary_operators=Main.eval(str(tuple(unary_operators)).replace("'", "")), | |
| bin_constraints=bin_constraints, | |
| una_constraints=una_constraints, | |
| parsimony=float(parsimony), | |
| loss=Main.custom_loss, | |
| alpha=float(alpha), | |
| maxsize=int(maxsize), | |
| maxdepth=int(maxdepth), | |
| fast_cycle=fast_cycle, | |
| migration=migration, | |
| hofMigration=hofMigration, | |
| fractionReplacedHof=float(fractionReplacedHof), | |
| shouldOptimizeConstants=shouldOptimizeConstants, | |
| hofFile=_escape_filename(equation_file), | |
| npopulations=int(populations), | |
| optimizer_algorithm=optimizer_algorithm, | |
| optimizer_nrestarts=int(optimizer_nrestarts), | |
| optimize_probability=float(optimize_probability), | |
| optimizer_iterations=int(optimizer_iterations), | |
| perturbationFactor=float(perturbationFactor), | |
| annealing=annealing, | |
| batching=batching, | |
| batchSize=int(min([batchSize, len(X)]) if batching else len(X)), | |
| mutationWeights=mutationWeights, | |
| warmupMaxsizeBy=float(warmupMaxsizeBy), | |
| useFrequency=useFrequency, | |
| npop=int(npop), | |
| ns=int(tournament_selection_n), | |
| probPickFirst=float(tournament_selection_p), | |
| ncyclesperiteration=int(ncyclesperiteration), | |
| fractionReplaced=float(fractionReplaced), | |
| topn=int(topn), | |
| verbosity=int(verbosity), | |
| progress=progress, | |
| terminal_width=int(term_width), | |
| ) | |
| np_dtype = {16: np.float16, 32: np.float32, 64: np.float64}[precision] | |
| Main.X = np.array(X, dtype=np_dtype).T | |
| if len(y.shape) == 1: | |
| Main.y = np.array(y, dtype=np_dtype) | |
| else: | |
| Main.y = np.array(y, dtype=np_dtype).T | |
| if weights is not None: | |
| if len(weights.shape) == 1: | |
| Main.weights = np.array(weights, dtype=np_dtype) | |
| else: | |
| Main.weights = np.array(weights, dtype=np_dtype).T | |
| else: | |
| Main.weights = None | |
| cprocs = 0 if multithreading else procs | |
| raw_julia_output = Main.EquationSearch( | |
| Main.X, | |
| Main.y, | |
| weights=Main.weights, | |
| niterations=int(niterations), | |
| varMap=variable_names, | |
| options=options, | |
| numprocs=int(cprocs), | |
| multithreading=bool(multithreading), | |
| ) | |
| _set_globals( | |
| X=X, | |
| equation_file=equation_file, | |
| variable_names=variable_names, | |
| extra_sympy_mappings=extra_sympy_mappings, | |
| extra_torch_mappings=extra_torch_mappings, | |
| extra_jax_mappings=extra_jax_mappings, | |
| output_jax_format=output_jax_format, | |
| output_torch_format=output_torch_format, | |
| multioutput=multioutput, | |
| nout=nout, | |
| selection=selection, | |
| raw_julia_output=raw_julia_output, | |
| ) | |
| equations = get_hof( | |
| equation_file=equation_file, | |
| n_features=X.shape[1], | |
| variable_names=variable_names, | |
| output_jax_format=output_jax_format, | |
| output_torch_format=output_torch_format, | |
| selection=selection, | |
| extra_sympy_mappings=extra_sympy_mappings, | |
| extra_jax_mappings=extra_jax_mappings, | |
| extra_torch_mappings=extra_torch_mappings, | |
| multioutput=multioutput, | |
| nout=nout, | |
| ) | |
| if delete_tempfiles: | |
| shutil.rmtree(tmpdir) | |
| return equations | |
| def _set_globals( | |
| *, | |
| X, | |
| equation_file, | |
| variable_names, | |
| extra_sympy_mappings, | |
| extra_torch_mappings, | |
| extra_jax_mappings, | |
| output_jax_format, | |
| output_torch_format, | |
| multioutput, | |
| nout, | |
| selection, | |
| raw_julia_output, | |
| ): | |
| global global_state | |
| global_state["n_features"] = X.shape[1] | |
| global_state["equation_file"] = equation_file | |
| global_state["variable_names"] = variable_names | |
| global_state["extra_sympy_mappings"] = extra_sympy_mappings | |
| global_state["extra_torch_mappings"] = extra_torch_mappings | |
| global_state["extra_jax_mappings"] = extra_jax_mappings | |
| global_state["output_jax_format"] = output_jax_format | |
| global_state["output_torch_format"] = output_torch_format | |
| global_state["multioutput"] = multioutput | |
| global_state["nout"] = nout | |
| global_state["selection"] = selection | |
| global_state["raw_julia_output"] = raw_julia_output | |
| def _handle_constraints(binary_operators, unary_operators, constraints): | |
| for op in unary_operators: | |
| if op not in constraints: | |
| constraints[op] = -1 | |
| for op in binary_operators: | |
| if op not in constraints: | |
| constraints[op] = (-1, -1) | |
| if op in ["plus", "sub"]: | |
| if constraints[op][0] != constraints[op][1]: | |
| raise NotImplementedError( | |
| "You need equal constraints on both sides for - and *, due to simplification strategies." | |
| ) | |
| elif op == "mult": | |
| # Make sure the complex expression is in the left side. | |
| if constraints[op][0] == -1: | |
| continue | |
| if constraints[op][1] == -1 or constraints[op][0] < constraints[op][1]: | |
| constraints[op][0], constraints[op][1] = ( | |
| constraints[op][1], | |
| constraints[op][0], | |
| ) | |
| def _create_inline_operators(binary_operators, unary_operators): | |
| for op_list in [binary_operators, unary_operators]: | |
| for i, op in enumerate(op_list): | |
| is_user_defined_operator = "(" in op | |
| if is_user_defined_operator: | |
| Main.eval(op) | |
| # Cut off from the first non-alphanumeric char: | |
| first_non_char = [ | |
| j | |
| for j, char in enumerate(op) | |
| if not (char.isalpha() or char.isdigit()) | |
| ][0] | |
| function_name = op[:first_non_char] | |
| op_list[i] = function_name | |
| def _handle_feature_selection( | |
| X, select_k_features, use_custom_variable_names, variable_names, y | |
| ): | |
| if select_k_features is not None: | |
| selection = run_feature_selection(X, y, select_k_features) | |
| print(f"Using features {selection}") | |
| X = X[:, selection] | |
| if use_custom_variable_names: | |
| variable_names = [variable_names[i] for i in selection] | |
| else: | |
| selection = None | |
| return X, variable_names, selection | |
| def _check_assertions( | |
| X, | |
| binary_operators, | |
| unary_operators, | |
| use_custom_variable_names, | |
| variable_names, | |
| weights, | |
| y, | |
| ): | |
| # Check for potential errors before they happen | |
| assert len(unary_operators) + len(binary_operators) > 0 | |
| assert len(X.shape) == 2 | |
| assert len(y.shape) in [1, 2] | |
| assert X.shape[0] == y.shape[0] | |
| if weights is not None: | |
| assert weights.shape == y.shape | |
| assert X.shape[0] == weights.shape[0] | |
| if use_custom_variable_names: | |
| assert len(variable_names) == X.shape[1] | |
| def run_feature_selection(X, y, select_k_features): | |
| """Use a gradient boosting tree regressor as a proxy for finding | |
| the k most important features in X, returning indices for those | |
| features as output.""" | |
| from sklearn.ensemble import RandomForestRegressor | |
| from sklearn.feature_selection import SelectFromModel, SelectKBest | |
| clf = RandomForestRegressor(n_estimators=100, max_depth=3, random_state=0) | |
| clf.fit(X, y) | |
| selector = SelectFromModel( | |
| clf, threshold=-np.inf, max_features=select_k_features, prefit=True | |
| ) | |
| return selector.get_support(indices=True) | |
| def get_hof( | |
| equation_file=None, | |
| n_features=None, | |
| variable_names=None, | |
| output_jax_format=None, | |
| output_torch_format=None, | |
| selection=None, | |
| extra_sympy_mappings=None, | |
| extra_jax_mappings=None, | |
| extra_torch_mappings=None, | |
| multioutput=None, | |
| nout=None, | |
| **kwargs, | |
| ): | |
| """Get the equations from a hall of fame file. If no arguments | |
| entered, the ones used previously from a call to PySR will be used.""" | |
| global global_state | |
| if equation_file is None: | |
| equation_file = global_state["equation_file"] | |
| if n_features is None: | |
| n_features = global_state["n_features"] | |
| if variable_names is None: | |
| variable_names = global_state["variable_names"] | |
| if extra_sympy_mappings is None: | |
| extra_sympy_mappings = global_state["extra_sympy_mappings"] | |
| if extra_jax_mappings is None: | |
| extra_jax_mappings = global_state["extra_jax_mappings"] | |
| if extra_torch_mappings is None: | |
| extra_torch_mappings = global_state["extra_torch_mappings"] | |
| if output_torch_format is None: | |
| output_torch_format = global_state["output_torch_format"] | |
| if output_jax_format is None: | |
| output_jax_format = global_state["output_jax_format"] | |
| if multioutput is None: | |
| multioutput = global_state["multioutput"] | |
| if nout is None: | |
| nout = global_state["nout"] | |
| if selection is None: | |
| selection = global_state["selection"] | |
| global_state["selection"] = selection | |
| global_state["equation_file"] = equation_file | |
| global_state["n_features"] = n_features | |
| global_state["variable_names"] = variable_names | |
| global_state["extra_sympy_mappings"] = extra_sympy_mappings | |
| global_state["extra_jax_mappings"] = extra_jax_mappings | |
| global_state["extra_torch_mappings"] = extra_torch_mappings | |
| global_state["output_torch_format"] = output_torch_format | |
| global_state["output_jax_format"] = output_jax_format | |
| global_state["multioutput"] = multioutput | |
| global_state["nout"] = nout | |
| global_state["selection"] = selection | |
| try: | |
| if multioutput: | |
| all_outputs = [ | |
| pd.read_csv(str(equation_file) + f".out{i}" + ".bkup", sep="|") | |
| for i in range(1, nout + 1) | |
| ] | |
| else: | |
| all_outputs = [pd.read_csv(str(equation_file) + ".bkup", sep="|")] | |
| except FileNotFoundError: | |
| raise RuntimeError( | |
| "Couldn't find equation file! The equation search likely exited before a single iteration completed." | |
| ) | |
| ret_outputs = [] | |
| for output in all_outputs: | |
| scores = [] | |
| lastMSE = None | |
| lastComplexity = 0 | |
| sympy_format = [] | |
| lambda_format = [] | |
| if output_jax_format: | |
| jax_format = [] | |
| if output_torch_format: | |
| torch_format = [] | |
| use_custom_variable_names = len(variable_names) != 0 | |
| local_sympy_mappings = {**extra_sympy_mappings, **sympy_mappings} | |
| if use_custom_variable_names: | |
| sympy_symbols = [sympy.Symbol(variable_names[i]) for i in range(n_features)] | |
| else: | |
| sympy_symbols = [sympy.Symbol("x%d" % i) for i in range(n_features)] | |
| for _, eqn_row in output.iterrows(): | |
| eqn = sympify(eqn_row["Equation"], locals=local_sympy_mappings) | |
| sympy_format.append(eqn) | |
| # Numpy: | |
| lambda_format.append(CallableEquation(sympy_symbols, eqn, selection)) | |
| # JAX: | |
| if output_jax_format: | |
| from .export_jax import sympy2jax | |
| func, params = sympy2jax( | |
| eqn, | |
| sympy_symbols, | |
| selection=selection, | |
| extra_jax_mappings=extra_jax_mappings, | |
| ) | |
| jax_format.append({"callable": func, "parameters": params}) | |
| # Torch: | |
| if output_torch_format: | |
| from .export_torch import sympy2torch | |
| module = sympy2torch( | |
| eqn, | |
| sympy_symbols, | |
| selection=selection, | |
| extra_torch_mappings=extra_torch_mappings, | |
| ) | |
| torch_format.append(module) | |
| curMSE = eqn_row["MSE"] | |
| curComplexity = eqn_row["Complexity"] | |
| if lastMSE is None: | |
| cur_score = 0.0 | |
| else: | |
| if curMSE > 0.0: | |
| cur_score = -np.log(curMSE / lastMSE) / (curComplexity - lastComplexity) | |
| else: | |
| cur_score = np.inf | |
| scores.append(cur_score) | |
| lastMSE = curMSE | |
| lastComplexity = curComplexity | |
| output["score"] = np.array(scores) | |
| output["sympy_format"] = sympy_format | |
| output["lambda_format"] = lambda_format | |
| output_cols = [ | |
| "Complexity", | |
| "MSE", | |
| "score", | |
| "Equation", | |
| "sympy_format", | |
| "lambda_format", | |
| ] | |
| if output_jax_format: | |
| output_cols += ["jax_format"] | |
| output["jax_format"] = jax_format | |
| if output_torch_format: | |
| output_cols += ["torch_format"] | |
| output["torch_format"] = torch_format | |
| ret_outputs.append(output[output_cols]) | |
| if multioutput: | |
| return ret_outputs | |
| return ret_outputs[0] | |
| def best_row(equations=None): | |
| """Return the best row of a hall of fame file using the score column. | |
| By default this uses the last equation file. | |
| """ | |
| if equations is None: | |
| equations = get_hof() | |
| if isinstance(equations, list): | |
| return [eq.iloc[np.argmax(eq["score"])] for eq in equations] | |
| return equations.iloc[np.argmax(equations["score"])] | |
| def best_tex(equations=None): | |
| """Return the equation with the best score, in latex format | |
| By default this uses the last equation file. | |
| """ | |
| if equations is None: | |
| equations = get_hof() | |
| if isinstance(equations, list): | |
| return [ | |
| sympy.latex(best_row(eq)["sympy_format"].simplify()) for eq in equations | |
| ] | |
| return sympy.latex(best_row(equations)["sympy_format"].simplify()) | |
| def best(equations=None): | |
| """Return the equation with the best score, in sympy format. | |
| By default this uses the last equation file. | |
| """ | |
| if equations is None: | |
| equations = get_hof() | |
| if isinstance(equations, list): | |
| return [best_row(eq)["sympy_format"].simplify() for eq in equations] | |
| return best_row(equations)["sympy_format"].simplify() | |
| def best_callable(equations=None): | |
| """Return the equation with the best score, in callable format. | |
| By default this uses the last equation file. | |
| """ | |
| if equations is None: | |
| equations = get_hof() | |
| if isinstance(equations, list): | |
| return [best_row(eq)["lambda_format"] for eq in equations] | |
| return best_row(equations)["lambda_format"] | |
| def _escape_filename(filename): | |
| """Turns a file into a string representation with correctly escaped backslashes""" | |
| str_repr = str(filename) | |
| str_repr = str_repr.replace("\\", "\\\\") | |
| return str_repr | |
| # https://gist.github.com/garrettdreyfus/8153571 | |
| def _yesno(question): | |
| """Simple Yes/No Function.""" | |
| prompt = f"{question} (y/n): " | |
| ans = input(prompt).strip().lower() | |
| if ans not in ["y", "n"]: | |
| print(f"{ans} is invalid, please try again...") | |
| return _yesno(question) | |
| if ans == "y": | |
| return True | |
| return False | |
| def _denoise(X, y, Xresampled=None): | |
| """Denoise the dataset using a Gaussian process""" | |
| from sklearn.gaussian_process import GaussianProcessRegressor | |
| from sklearn.gaussian_process.kernels import RBF, WhiteKernel, ConstantKernel | |
| gp_kernel = RBF(np.ones(X.shape[1])) + WhiteKernel(1e-1) + ConstantKernel() | |
| gpr = GaussianProcessRegressor(kernel=gp_kernel, n_restarts_optimizer=50) | |
| gpr.fit(X, y) | |
| if Xresampled is not None: | |
| return Xresampled, gpr.predict(Xresampled) | |
| return X, gpr.predict(X) | |
| class CallableEquation: | |
| """Simple wrapper for numpy lambda functions built with sympy""" | |
| def __init__(self, sympy_symbols, eqn, selection=None): | |
| self._sympy = eqn | |
| self._sympy_symbols = sympy_symbols | |
| self._selection = selection | |
| self._lambda = lambdify(sympy_symbols, eqn) | |
| def __repr__(self): | |
| return f"PySRFunction(X=>{self._sympy})" | |
| def __call__(self, X): | |
| if self._selection is not None: | |
| return self._lambda(*X[:, self._selection].T) | |
| return self._lambda(*X.T) | |
| def _get_julia_project(julia_project): | |
| pkg_directory = Path(__file__).parents[1] | |
| if julia_project is None: | |
| return pkg_directory | |
| return Path(julia_project) | |