Spaces:
Running
Running
| import Optim | |
| const maxdegree = 2 | |
| const actualMaxsize = maxsize + maxdegree | |
| # Sum of square error between two arrays | |
| function SSE(x::Array{Float32}, y::Array{Float32})::Float32 | |
| diff = (x - y) | |
| return sum(diff .* diff) | |
| end | |
| # Mean of square error between two arrays | |
| function MSE(x::Array{Float32}, y::Array{Float32})::Float32 | |
| return SSE(x, y)/size(x)[1] | |
| end | |
| const len = size(X)[1] | |
| const baselineMSE = MSE(y, convert(Array{Float32, 1}, ones(len) .* sum(y)/len)) | |
| id = (x,) -> x | |
| const nuna = size(unaops)[1] | |
| const nbin = size(binops)[1] | |
| const nops = nuna + nbin | |
| const nvar = size(X)[2]; | |
| function debug(verbosity, string...) | |
| verbosity > 0 ? println(string...) : nothing | |
| end | |
| function getTime()::Int32 | |
| return round(Int32, 1e3*(time()-1.6e9)) | |
| end | |
| # Define a serialization format for the symbolic equations: | |
| mutable struct Node | |
| #Holds operators, variables, constants in a tree | |
| degree::Integer #0 for constant/variable, 1 for cos/sin, 2 for +/* etc. | |
| val::Union{Float32, Integer} #Either const value, or enumerates variable | |
| constant::Bool #false if variable | |
| op::Function #enumerates operator (for degree=1,2) | |
| l::Union{Node, Nothing} | |
| r::Union{Node, Nothing} | |
| Node(val::Float32) = new(0, val, true, id, nothing, nothing) | |
| Node(val::Integer) = new(0, val, false, id, nothing, nothing) | |
| Node(op, l::Node) = new(1, 0.0f0, false, op, l, nothing) | |
| Node(op, l::Union{Float32, Integer}) = new(1, 0.0f0, false, op, Node(l), nothing) | |
| Node(op, l::Node, r::Node) = new(2, 0.0f0, false, op, l, r) | |
| #Allow to pass the leaf value without additional node call: | |
| Node(op, l::Union{Float32, Integer}, r::Node) = new(2, 0.0f0, false, op, Node(l), r) | |
| Node(op, l::Node, r::Union{Float32, Integer}) = new(2, 0.0f0, false, op, l, Node(r)) | |
| Node(op, l::Union{Float32, Integer}, r::Union{Float32, Integer}) = new(2, 0.0f0, false, op, Node(l), Node(r)) | |
| end | |
| # Copy an equation (faster than deepcopy) | |
| function copyNode(tree::Node)::Node | |
| if tree.degree == 0 | |
| return Node(tree.val) | |
| elseif tree.degree == 1 | |
| return Node(tree.op, copyNode(tree.l)) | |
| else | |
| return Node(tree.op, copyNode(tree.l), copyNode(tree.r)) | |
| end | |
| end | |
| # Evaluate a symbolic equation: | |
| function evalTree(tree::Node, x::Array{Float32, 1}=Float32[])::Float32 | |
| if tree.degree == 0 | |
| if tree.constant | |
| return tree.val | |
| else | |
| return x[tree.val] | |
| end | |
| elseif tree.degree == 1 | |
| return tree.op(evalTree(tree.l, x)) | |
| else | |
| return tree.op(evalTree(tree.l, x), evalTree(tree.r, x)) | |
| end | |
| end | |
| # Count the operators, constants, variables in an equation | |
| function countNodes(tree::Node)::Integer | |
| if tree.degree == 0 | |
| return 1 | |
| elseif tree.degree == 1 | |
| return 1 + countNodes(tree.l) | |
| else | |
| return 1 + countNodes(tree.l) + countNodes(tree.r) | |
| end | |
| end | |
| # Convert an equation to a string | |
| function stringTree(tree::Node)::String | |
| if tree.degree == 0 | |
| if tree.constant | |
| return string(tree.val) | |
| else | |
| return "x$(tree.val - 1)" | |
| end | |
| elseif tree.degree == 1 | |
| return "$(tree.op)($(stringTree(tree.l)))" | |
| else | |
| return "$(tree.op)($(stringTree(tree.l)), $(stringTree(tree.r)))" | |
| end | |
| end | |
| # Print an equation | |
| function printTree(tree::Node) | |
| println(stringTree(tree)) | |
| end | |
| # Return a random node from the tree | |
| function randomNode(tree::Node)::Node | |
| if tree.degree == 0 | |
| return tree | |
| end | |
| a = countNodes(tree) | |
| b = 0 | |
| c = 0 | |
| if tree.degree >= 1 | |
| b = countNodes(tree.l) | |
| end | |
| if tree.degree == 2 | |
| c = countNodes(tree.r) | |
| end | |
| i = rand(1:1+b+c) | |
| if i <= b | |
| return randomNode(tree.l) | |
| elseif i == b + 1 | |
| return tree | |
| end | |
| return randomNode(tree.r) | |
| end | |
| # Count the number of unary operators in the equation | |
| function countUnaryOperators(tree::Node)::Integer | |
| if tree.degree == 0 | |
| return 0 | |
| elseif tree.degree == 1 | |
| return 1 + countUnaryOperators(tree.l) | |
| else | |
| return 0 + countUnaryOperators(tree.l) + countUnaryOperators(tree.r) | |
| end | |
| end | |
| # Count the number of binary operators in the equation | |
| function countBinaryOperators(tree::Node)::Integer | |
| if tree.degree == 0 | |
| return 0 | |
| elseif tree.degree == 1 | |
| return 0 + countBinaryOperators(tree.l) | |
| else | |
| return 1 + countBinaryOperators(tree.l) + countBinaryOperators(tree.r) | |
| end | |
| end | |
| # Count the number of operators in the equation | |
| function countOperators(tree::Node)::Integer | |
| return countUnaryOperators(tree) + countBinaryOperators(tree) | |
| end | |
| # Randomly convert an operator into another one (binary->binary; | |
| # unary->unary) | |
| function mutateOperator(tree::Node)::Node | |
| if countOperators(tree) == 0 | |
| return tree | |
| end | |
| node = randomNode(tree) | |
| while node.degree == 0 | |
| node = randomNode(tree) | |
| end | |
| if node.degree == 1 | |
| node.op = unaops[rand(1:length(unaops))] | |
| else | |
| node.op = binops[rand(1:length(binops))] | |
| end | |
| return tree | |
| end | |
| # Count the number of constants in an equation | |
| function countConstants(tree::Node)::Integer | |
| if tree.degree == 0 | |
| return convert(Integer, tree.constant) | |
| elseif tree.degree == 1 | |
| return 0 + countConstants(tree.l) | |
| else | |
| return 0 + countConstants(tree.l) + countConstants(tree.r) | |
| end | |
| end | |
| # Randomly perturb a constant | |
| function mutateConstant( | |
| tree::Node, T::Float32, | |
| probNegate::Float32=0.01f0)::Node | |
| # T is between 0 and 1. | |
| if countConstants(tree) == 0 | |
| return tree | |
| end | |
| node = randomNode(tree) | |
| while node.degree != 0 || node.constant == false | |
| node = randomNode(tree) | |
| end | |
| bottom = 0.1f0 | |
| maxChange = T + 1.0f0 + bottom | |
| factor = maxChange^Float32(rand()) | |
| makeConstBigger = rand() > 0.5 | |
| if makeConstBigger | |
| node.val *= factor | |
| else | |
| node.val /= factor | |
| end | |
| if rand() > probNegate | |
| node.val *= -1 | |
| end | |
| return tree | |
| end | |
| # Evaluate an equation over an array of datapoints | |
| function evalTreeArray(tree::Node)::Array{Float32, 1} | |
| if tree.degree == 0 | |
| if tree.constant | |
| return ones(Float32, len) .* tree.val | |
| else | |
| return ones(Float32, len) .* X[:, tree.val] | |
| end | |
| elseif tree.degree == 1 | |
| return tree.op.(evalTreeArray(tree.l)) | |
| else | |
| return tree.op.(evalTreeArray(tree.l), evalTreeArray(tree.r)) | |
| end | |
| end | |
| # Score an equation | |
| function scoreFunc(tree::Node)::Float32 | |
| try | |
| return MSE(evalTreeArray(tree), y) + countNodes(tree)*parsimony | |
| catch error | |
| if isa(error, DomainError) | |
| return 1f9 | |
| else | |
| throw(error) | |
| end | |
| end | |
| end | |
| # Add a random unary/binary operation to the end of a tree | |
| function appendRandomOp(tree::Node)::Node | |
| node = randomNode(tree) | |
| while node.degree != 0 | |
| node = randomNode(tree) | |
| end | |
| choice = rand() | |
| makeNewBinOp = choice < nbin/nops | |
| if rand() > 0.5 | |
| left = Float32(randn()) | |
| else | |
| left = rand(1:nvar) | |
| end | |
| if rand() > 0.5 | |
| right = Float32(randn()) | |
| else | |
| right = rand(1:nvar) | |
| end | |
| if makeNewBinOp | |
| newnode = Node( | |
| binops[rand(1:length(binops))], | |
| left, | |
| right | |
| ) | |
| else | |
| newnode = Node( | |
| unaops[rand(1:length(unaops))], | |
| left | |
| ) | |
| end | |
| node.l = newnode.l | |
| node.r = newnode.r | |
| node.op = newnode.op | |
| node.degree = newnode.degree | |
| node.val = newnode.val | |
| node.constant = newnode.constant | |
| return tree | |
| end | |
| # Add random node to the top of a tree | |
| function popRandomOp(tree::Node)::Node | |
| node = tree | |
| choice = rand() | |
| makeNewBinOp = choice < nbin/nops | |
| left = tree | |
| if makeNewBinOp | |
| right = randomConstantNode() | |
| newnode = Node( | |
| binops[rand(1:length(binops))], | |
| left, | |
| right | |
| ) | |
| else | |
| newnode = Node( | |
| unaops[rand(1:length(unaops))], | |
| left | |
| ) | |
| end | |
| node.l = newnode.l | |
| node.r = newnode.r | |
| node.op = newnode.op | |
| node.degree = newnode.degree | |
| node.val = newnode.val | |
| node.constant = newnode.constant | |
| return node | |
| end | |
| # Insert random node | |
| function insertRandomOp(tree::Node)::Node | |
| node = randomNode(tree) | |
| choice = rand() | |
| makeNewBinOp = choice < nbin/nops | |
| left = copyNode(node) | |
| if makeNewBinOp | |
| right = randomConstantNode() | |
| newnode = Node( | |
| binops[rand(1:length(binops))], | |
| left, | |
| right | |
| ) | |
| else | |
| newnode = Node( | |
| unaops[rand(1:length(unaops))], | |
| left | |
| ) | |
| end | |
| node.l = newnode.l | |
| node.r = newnode.r | |
| node.op = newnode.op | |
| node.degree = newnode.degree | |
| node.val = newnode.val | |
| node.constant = newnode.constant | |
| return tree | |
| end | |
| function randomConstantNode()::Node | |
| if rand() > 0.5 | |
| val = Float32(randn()) | |
| else | |
| val = rand(1:nvar) | |
| end | |
| newnode = Node(val) | |
| return newnode | |
| end | |
| # Select a random node, and replace it an the subtree | |
| # with a variable or constant | |
| function deleteRandomOp(tree::Node)::Node | |
| node = randomNode(tree) | |
| # Can "delete" variable or constant too | |
| newnode = randomConstantNode() | |
| node.l = newnode.l | |
| node.r = newnode.r | |
| node.op = newnode.op | |
| node.degree = newnode.degree | |
| node.val = newnode.val | |
| node.constant = newnode.constant | |
| return tree | |
| end | |
| # Simplify tree | |
| function simplifyTree(tree::Node)::Node | |
| if tree.degree == 1 | |
| tree.l = simplifyTree(tree.l) | |
| if tree.l.degree == 0 && tree.l.constant | |
| return Node(tree.op(tree.l.val)) | |
| end | |
| elseif tree.degree == 2 | |
| tree.r = simplifyTree(tree.r) | |
| tree.l = simplifyTree(tree.l) | |
| constantsBelow = ( | |
| tree.l.degree == 0 && tree.l.constant && | |
| tree.r.degree == 0 && tree.r.constant | |
| ) | |
| if constantsBelow | |
| return Node(tree.op(tree.l.val, tree.r.val)) | |
| end | |
| end | |
| return tree | |
| end | |
| # Go through one simulated annealing mutation cycle | |
| # exp(-delta/T) defines probability of accepting a change | |
| function iterate( | |
| tree::Node, T::Float32; | |
| annealing::Bool=true | |
| )::Node | |
| prev = tree | |
| tree = copyNode(tree) | |
| mutationChoice = rand() | |
| weightAdjustmentMutateConstant = min(8, countConstants(tree))/8.0 | |
| cur_weights = copy(mutationWeights) .* 1.0 | |
| cur_weights[1] *= weightAdjustmentMutateConstant | |
| cur_weights /= sum(cur_weights) | |
| cweights = cumsum(cur_weights) | |
| n = countNodes(tree) | |
| if mutationChoice < cweights[1] | |
| tree = mutateConstant(tree, T) | |
| elseif mutationChoice < cweights[2] | |
| tree = mutateOperator(tree) | |
| elseif mutationChoice < cweights[3] && n < maxsize | |
| toInsert = rand() < 0.1 | |
| if toInsert | |
| tree = insertRandomOp(tree) | |
| else | |
| tree = appendRandomOp(tree) | |
| end | |
| elseif mutationChoice < cweights[4] | |
| tree = deleteRandomOp(tree) | |
| elseif mutationChoice < cweights[5] | |
| tree = simplifyTree(tree) # Sometimes we simplify tree | |
| return tree | |
| elseif mutationChoice < cweights[6] | |
| tree = genRandomTree(5) # Sometimes we simplify tree | |
| else | |
| return tree | |
| end | |
| if annealing | |
| beforeLoss = scoreFunc(prev) | |
| afterLoss = scoreFunc(tree) | |
| delta = afterLoss - beforeLoss | |
| probChange = exp(-delta/(T*alpha)) | |
| if isnan(afterLoss) || probChange < rand() | |
| return copyNode(prev) | |
| end | |
| end | |
| return tree | |
| end | |
| # Create a random equation by appending random operators | |
| function genRandomTree(length::Integer)::Node | |
| tree = Node(1.0f0) | |
| for i=1:length | |
| tree = appendRandomOp(tree) | |
| end | |
| return tree | |
| end | |
| # Define a member of population by equation, score, and age | |
| mutable struct PopMember | |
| tree::Node | |
| score::Float32 | |
| birth::Int32 | |
| PopMember(t::Node) = new(t, scoreFunc(t), getTime()) | |
| PopMember(t::Node, score::Float32) = new(t, score, getTime()) | |
| end | |
| # A list of members of the population, with easy constructors, | |
| # which allow for random generation of new populations | |
| mutable struct Population | |
| members::Array{PopMember, 1} | |
| n::Integer | |
| Population(pop::Array{PopMember, 1}) = new(pop, size(pop)[1]) | |
| Population(npop::Integer) = new([PopMember(genRandomTree(3)) for i=1:npop], npop) | |
| Population(npop::Integer, nlength::Integer) = new([PopMember(genRandomTree(nlength)) for i=1:npop], npop) | |
| end | |
| # Sample 10 random members of the population, and make a new one | |
| function samplePop(pop::Population)::Population | |
| idx = rand(1:pop.n, ns) | |
| return Population(pop.members[idx]) | |
| end | |
| # Sample the population, and get the best member from that sample | |
| function bestOfSample(pop::Population)::PopMember | |
| sample = samplePop(pop) | |
| best_idx = argmin([sample.members[member].score for member=1:sample.n]) | |
| return sample.members[best_idx] | |
| end | |
| # Return best 10 examples | |
| function bestSubPop(pop::Population; topn::Integer=10)::Population | |
| best_idx = sortperm([pop.members[member].score for member=1:pop.n]) | |
| return Population(pop.members[best_idx[1:topn]]) | |
| end | |
| # Mutate the best sampled member of the population | |
| function iterateSample( | |
| pop::Population, T::Float32; | |
| annealing::Bool=true)::PopMember | |
| allstar = bestOfSample(pop) | |
| new = iterate( | |
| allstar.tree, T, | |
| annealing=annealing) | |
| allstar.tree = new | |
| allstar.score = scoreFunc(new) | |
| allstar.birth = getTime() | |
| return allstar | |
| end | |
| # Pass through the population several times, replacing the oldest | |
| # with the fittest of a small subsample | |
| function regEvolCycle( | |
| pop::Population, T::Float32; | |
| annealing::Bool=true)::Population | |
| for i=1:round(Integer, pop.n/ns) | |
| baby = iterateSample(pop, T, annealing=annealing) | |
| #printTree(baby.tree) | |
| oldest = argmin([pop.members[member].birth for member=1:pop.n]) | |
| pop.members[oldest] = baby | |
| end | |
| return pop | |
| end | |
| # Cycle through regularized evolution many times, | |
| # printing the fittest equation every 10% through | |
| function run( | |
| pop::Population, | |
| ncycles::Integer, | |
| annealing::Bool=false; | |
| verbosity::Integer=0 | |
| )::Population | |
| allT = LinRange(1.0f0, 0.0f0, ncycles) | |
| for iT in 1:size(allT)[1] | |
| if annealing | |
| pop = regEvolCycle(pop, allT[iT], annealing=true) | |
| else | |
| pop = regEvolCycle(pop, 1.0f0, annealing=true) | |
| end | |
| if verbosity > 0 && (iT % verbosity == 0) | |
| bestPops = bestSubPop(pop) | |
| bestCurScoreIdx = argmin([bestPops.members[member].score for member=1:bestPops.n]) | |
| bestCurScore = bestPops.members[bestCurScoreIdx].score | |
| debug(verbosity, bestCurScore, " is the score for ", stringTree(bestPops.members[bestCurScoreIdx].tree)) | |
| end | |
| end | |
| return pop | |
| end | |
| # Get all the constants from a tree | |
| function getConstants(tree::Node)::Array{Float32, 1} | |
| if tree.degree == 0 | |
| if tree.constant | |
| return [tree.val] | |
| else | |
| return Float32[] | |
| end | |
| elseif tree.degree == 1 | |
| return getConstants(tree.l) | |
| else | |
| both = [getConstants(tree.l), getConstants(tree.r)] | |
| return [constant for subtree in both for constant in subtree] | |
| end | |
| end | |
| # Set all the constants inside a tree | |
| function setConstants(tree::Node, constants::Array{Float32, 1}) | |
| if tree.degree == 0 | |
| if tree.constant | |
| tree.val = constants[1] | |
| end | |
| elseif tree.degree == 1 | |
| setConstants(tree.l, constants) | |
| else | |
| numberLeft = countConstants(tree.l) | |
| setConstants(tree.l, constants) | |
| setConstants(tree.r, constants[numberLeft+1:end]) | |
| end | |
| end | |
| # Proxy function for optimization | |
| function optFunc(x::Array{Float32, 1}, tree::Node)::Float32 | |
| setConstants(tree, x) | |
| return scoreFunc(tree) | |
| end | |
| # Use Nelder-Mead to optimize the constants in an equation | |
| function optimizeConstants(member::PopMember)::PopMember | |
| nconst = countConstants(member.tree) | |
| if nconst == 0 | |
| return member | |
| end | |
| x0 = getConstants(member.tree) | |
| f(x::Array{Float32,1})::Float32 = optFunc(x, member.tree) | |
| if size(x0)[1] == 1 | |
| result = Optim.optimize(f, x0, Optim.Newton(), Optim.Options(iterations=20)) | |
| else | |
| result = Optim.optimize(f, x0, Optim.NelderMead(), Optim.Options(iterations=100)) | |
| end | |
| if Optim.converged(result) | |
| setConstants(member.tree, result.minimizer) | |
| member.score = convert(Float32, result.minimum) | |
| member.birth = getTime() | |
| else | |
| setConstants(member.tree, x0) | |
| end | |
| return member | |
| end | |
| # List of the best members seen all time | |
| mutable struct HallOfFame | |
| members::Array{PopMember, 1} | |
| exists::Array{Bool, 1} #Whether it has been set | |
| # Arranged by complexity - store one at each. | |
| HallOfFame() = new([PopMember(Node(1f0), 1f9) for i=1:actualMaxsize], [false for i=1:actualMaxsize]) | |
| end | |
| function fullRun(niterations::Integer; | |
| npop::Integer=300, | |
| annealing::Bool=true, | |
| ncyclesperiteration::Integer=3000, | |
| fractionReplaced::Float32=0.1f0, | |
| verbosity::Integer=0, | |
| topn::Integer=10 | |
| ) | |
| debug(verbosity, "Running with $nthreads threads") | |
| # Generate random initial populations | |
| allPops = [Population(npop, 3) for j=1:nthreads] | |
| bestSubPops = [Population(1) for j=1:nthreads] | |
| # Repeat this many evolutions; we collect and migrate the best | |
| # each time. | |
| hallOfFame = HallOfFame() | |
| for k=1:niterations | |
| # Spawn threads to run indepdent evolutions, then gather them | |
| @inbounds Threads.@threads for i=1:nthreads | |
| allPops[i] = run(allPops[i], ncyclesperiteration, annealing, verbosity=verbosity) | |
| topn = npop | |
| bestSubPops[i] = bestSubPop(allPops[i], topn=topn) | |
| for j=1:bestSubPops[i].n | |
| bestSubPops[i].members[j].tree = simplifyTree(bestSubPops[i].members[j].tree) | |
| if shouldOptimizeConstants | |
| bestSubPops[i].members[j] = optimizeConstants(bestSubPops[i].members[j]) | |
| end | |
| end | |
| end | |
| # Get best 10 models from each evolution. Copy because we re-assign later. | |
| # bestPops = deepcopy(Population([member for pop in allPops for member in bestSubPop(pop).members])) | |
| bestPops = deepcopy(Population([member for pop in bestSubPops for member in pop.members])) | |
| #Update hall of fame | |
| for member in bestPops.members | |
| size = countNodes(member.tree) | |
| if member.score < hallOfFame.members[size].score | |
| hallOfFame.members[size] = deepcopy(member) | |
| hallOfFame.exists[size] = true | |
| end | |
| end | |
| dominating = PopMember[] | |
| open(hofFile, "w") do io | |
| debug(verbosity, "Hall of Fame:") | |
| debug(verbosity, "-----------------------------------------") | |
| debug(verbosity, "Complexity \t MSE \t Equation") | |
| println(io,"Complexity|MSE|Equation") | |
| for size=1:actualMaxsize | |
| if hallOfFame.exists[size] | |
| member = hallOfFame.members[size] | |
| numberSmallerAndBetter = sum([member.score > hallOfFame.members[i].score for i=1:(size-1)]) | |
| betterThanAllSmaller = (numberSmallerAndBetter == 0) | |
| if betterThanAllSmaller | |
| debug(verbosity, "$size \t $(member.score-parsimony*size) \t $(stringTree(member.tree))") | |
| println(io, "$size|$(member.score-parsimony*size)|$(stringTree(member.tree))") | |
| push!(dominating, member) | |
| end | |
| end | |
| end | |
| debug(verbosity, "") | |
| end | |
| # Migration | |
| if migration | |
| for j=1:nthreads | |
| for k in rand(1:npop, round(Integer, npop*fractionReplaced)) | |
| # Copy in case one gets used twice | |
| allPops[j].members[k] = deepcopy(bestPops.members[rand(1:size(bestPops.members)[1])]) | |
| end | |
| end | |
| end | |
| # Hall of fame migration | |
| if hofMigration && size(dominating)[1] > 0 | |
| for j=1:nthreads | |
| for k in rand(1:npop, round(Integer, npop*fractionReplacedHof)) | |
| # Copy in case one gets used twice | |
| allPops[j].members[k] = deepcopy(dominating[rand(1:size(dominating)[1])]) | |
| end | |
| end | |
| end | |
| end | |
| end | |