Spaces:
Sleeping
Sleeping
| import os | |
| from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter | |
| from collections import namedtuple | |
| import pathlib | |
| import numpy as np | |
| import pandas as pd | |
| # Dumped from hyperparam optimization | |
| default_alpha = 3.861222 | |
| default_fractionReplaced = 0.057940 | |
| default_fractionReplacedHof = 0.206182 | |
| default_npop = 124.000000 | |
| default_weightAddNode = 1.599672 | |
| default_weightDeleteNode = 0.049554 | |
| default_weightMutateConstant = 5.295328 | |
| default_weightMutateOperator = 0.465999 | |
| default_weightRandomize = 0.184765 | |
| default_weightSimplify = 0.149432 | |
| default_weightDoNothing = 1.000000 | |
| default_result = 0.028084 | |
| default_topn = 10 | |
| default_parsimony = 1e-3 | |
| def eureqa(X=None, y=None, threads=4, | |
| niterations=20, | |
| ncyclesperiteration=10000, | |
| binary_operators=["plus", "mult"], | |
| unary_operators=["cos", "exp", "sin"], | |
| alpha=default_alpha, | |
| annealing=True, | |
| fractionReplaced=default_fractionReplaced, | |
| fractionReplacedHof=default_fractionReplacedHof, | |
| npop=int(default_npop), | |
| parsimony=1e-3, | |
| migration=True, | |
| hofMigration=True, | |
| shouldOptimizeConstants=True, | |
| topn=int(default_topn), | |
| weightAddNode=default_weightAddNode, | |
| weightDeleteNode=default_weightDeleteNode, | |
| weightDoNothing=default_weightDoNothing, | |
| weightMutateConstant=default_weightMutateConstant, | |
| weightMutateOperator=default_weightMutateOperator, | |
| weightRandomize=default_weightRandomize, | |
| weightSimplify=default_weightSimplify, | |
| timeout=None, | |
| equation_file='hall_of_fame.csv', | |
| test='simple1', | |
| verbosity=1e9, | |
| maxsize=20, | |
| ): | |
| """Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i. | |
| Note: most default parameters have been tuned over several example | |
| equations, but you should adjust `threads`, `niterations`, | |
| `binary_operators`, `unary_operators` to your requirements. | |
| :param X: np.ndarray, 2D array. Rows are examples, columns are features. | |
| :param y: np.ndarray, 1D array. Rows are examples. | |
| :param threads: int, Number of threads (=number of populations running). | |
| You can have more threads than cores - it actually makes it more | |
| efficient. | |
| :param niterations: int, Number of iterations of the algorithm to run. The best | |
| equations are printed, and migrate between populations, at the | |
| end of each. | |
| :param ncyclesperiteration: int, Number of total mutations to run, per 10 | |
| samples of the population, per iteration. | |
| :param binary_operators: list, List of strings giving the binary operators | |
| in Julia's Base, or in `operator.jl`. | |
| :param unary_operators: list, Same but for operators taking a single `Float32`. | |
| :param alpha: float, Initial temperature. | |
| :param annealing: bool, Whether to use annealing. You should (and it is default). | |
| :param fractionReplaced: float, How much of population to replace with migrating | |
| equations from other populations. | |
| :param fractionReplacedHof: float, How much of population to replace with migrating | |
| equations from hall of fame. | |
| :param npop: int, Number of individuals in each population | |
| :param parsimony: float, Multiplicative factor for how much to punish complexity. | |
| :param migration: bool, Whether to migrate. | |
| :param hofMigration: bool, Whether to have the hall of fame migrate. | |
| :param shouldOptimizeConstants: bool, Whether to numerically optimize | |
| constants (Nelder-Mead/Newton) at the end of each iteration. | |
| :param topn: int, How many top individuals migrate from each population. | |
| :param weightAddNode: float, Relative likelihood for mutation to add a node | |
| :param weightDeleteNode: float, Relative likelihood for mutation to delete a node | |
| :param weightDoNothing: float, Relative likelihood for mutation to leave the individual | |
| :param weightMutateConstant: float, Relative likelihood for mutation to change | |
| the constant slightly in a random direction. | |
| :param weightMutateOperator: float, Relative likelihood for mutation to swap | |
| an operator. | |
| :param weightRandomize: float, Relative likelihood for mutation to completely | |
| delete and then randomly generate the equation | |
| :param weightSimplify: float, Relative likelihood for mutation to simplify | |
| constant parts by evaluation | |
| :param timeout: float, Time in seconds to timeout search | |
| :param equation_file: str, Where to save the files (.csv separated by |) | |
| :param test: str, What test to run, if X,y not passed. | |
| :param maxsize: int, Max size of an equation. | |
| :returns: pd.DataFrame, Results dataframe, giving complexity, MSE, and equations | |
| (as strings). | |
| """ | |
| rand_string = f'{"".join([str(np.random.rand())[2] for i in range(20)])}' | |
| if isinstance(binary_operators, str): binary_operators = [binary_operators] | |
| if isinstance(unary_operators, str): unary_operators = [unary_operators] | |
| if X is None: | |
| if test == 'simple1': | |
| eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5" | |
| elif test == 'simple2': | |
| eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**3.5 + 1/(np.abs(X[:, 0])+1)" | |
| elif test == 'simple3': | |
| eval_str = "np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)" | |
| elif test == 'simple4': | |
| eval_str = "1.0 + 3*X[:, 0]**2 - 0.5*X[:, 0]**3 + 0.1*X[:, 0]**4" | |
| elif test == 'simple5': | |
| eval_str = "(np.exp(X[:, 3]) + 3)/(np.abs(X[:, 1]) + np.cos(X[:, 0]) + 1.1)" | |
| X = np.random.randn(100, 5)*3 | |
| y = eval(eval_str) | |
| print("Running on", eval_str) | |
| def_hyperparams = f"""include("operators.jl") | |
| const binops = {'[' + ', '.join(binary_operators) + ']'} | |
| const unaops = {'[' + ', '.join(unary_operators) + ']'} | |
| const ns=10; | |
| const parsimony = {parsimony:f}f0 | |
| const alpha = {alpha:f}f0 | |
| const maxsize = {maxsize:d} | |
| const migration = {'true' if migration else 'false'} | |
| const hofMigration = {'true' if hofMigration else 'false'} | |
| const fractionReplacedHof = {fractionReplacedHof}f0 | |
| const shouldOptimizeConstants = {'true' if shouldOptimizeConstants else 'false'} | |
| const hofFile = "{equation_file}" | |
| const nthreads = {threads:d} | |
| const mutationWeights = [ | |
| {weightMutateConstant:f}, | |
| {weightMutateOperator:f}, | |
| {weightAddNode:f}, | |
| {weightDeleteNode:f}, | |
| {weightSimplify:f}, | |
| {weightRandomize:f}, | |
| {weightDoNothing:f} | |
| ] | |
| """ | |
| assert len(X.shape) == 2 | |
| assert len(y.shape) == 1 | |
| X_str = str(X.tolist()).replace('],', '];').replace(',', '') | |
| y_str = str(y.tolist()) | |
| def_datasets = """const X = convert(Array{Float32, 2}, """f"{X_str})"""" | |
| const y = convert(Array{Float32, 1}, """f"{y_str})"""" | |
| """ | |
| starting_path = f'cd {pathlib.Path().absolute()}' | |
| code_path = f'cd {pathlib.Path(__file__).parent.absolute()}' #Move to filepath of code | |
| os.system(code_path) | |
| with open(f'.hyperparams_{rand_string}.jl', 'w') as f: | |
| print(def_hyperparams, file=f) | |
| with open(f'.dataset_{rand_string}.jl', 'w') as f: | |
| print(def_datasets, file=f) | |
| command = [ | |
| 'julia -O3', | |
| f'--threads {threads}', | |
| '-e', | |
| f'\'include(".hyperparams_{rand_string}.jl"); include(".dataset_{rand_string}.jl"); include("eureqa.jl"); fullRun({niterations:d}, npop={npop:d}, annealing={"true" if annealing else "false"}, ncyclesperiteration={ncyclesperiteration:d}, fractionReplaced={fractionReplaced:f}f0, verbosity=round(Int32, {verbosity:f}), topn={topn:d})\'', | |
| ] | |
| if timeout is not None: | |
| command = [f'timeout {timeout}'] + command | |
| cur_cmd = ' '.join(command) | |
| print("Running on", cur_cmd) | |
| os.system(cur_cmd) | |
| try: | |
| output = pd.read_csv(equation_file, sep="|") | |
| except FileNotFoundError: | |
| print("Couldn't find equation file!") | |
| output = pd.DataFrame() | |
| os.system(starting_path) | |
| return output | |
| if __name__ == "__main__": | |
| parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) | |
| parser.add_argument("--threads", type=int, default=4, help="Number of threads") | |
| parser.add_argument("--parsimony", type=float, default=default_parsimony, help="How much to punish complexity") | |
| parser.add_argument("--alpha", type=float, default=default_alpha, help="Scaling of temperature") | |
| parser.add_argument("--maxsize", type=int, default=20, help="Max size of equation") | |
| parser.add_argument("--niterations", type=int, default=20, help="Number of total migration periods") | |
| parser.add_argument("--npop", type=int, default=int(default_npop), help="Number of members per population") | |
| parser.add_argument("--ncyclesperiteration", type=int, default=10000, help="Number of evolutionary cycles per migration") | |
| parser.add_argument("--topn", type=int, default=int(default_topn), help="How many best species to distribute from each population") | |
| parser.add_argument("--fractionReplacedHof", type=float, default=default_fractionReplacedHof, help="Fraction of population to replace with hall of fame") | |
| parser.add_argument("--fractionReplaced", type=float, default=default_fractionReplaced, help="Fraction of population to replace with best from other populations") | |
| parser.add_argument("--migration", type=bool, default=True, help="Whether to migrate") | |
| parser.add_argument("--hofMigration", type=bool, default=True, help="Whether to have hall of fame migration") | |
| parser.add_argument("--shouldOptimizeConstants", type=bool, default=True, help="Whether to use classical optimization on constants before every migration (doesn't impact performance that much)") | |
| parser.add_argument("--annealing", type=bool, default=True, help="Whether to use simulated annealing") | |
| parser.add_argument("--equation_file", type=str, default='hall_of_fame.csv', help="File to dump best equations to") | |
| parser.add_argument("--test", type=str, default='simple1', help="Which test to run") | |
| parser.add_argument( | |
| "--binary-operators", type=str, nargs="+", default=["plus", "mult"], | |
| help="Binary operators. Make sure they are defined in operators.jl") | |
| parser.add_argument( | |
| "--unary-operators", type=str, nargs="+", default=["exp", "sin", "cos"], | |
| help="Unary operators. Make sure they are defined in operators.jl") | |
| args = vars(parser.parse_args()) #dict | |
| eureqa(**args) | |