Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from data import test_equations | |
| from plots import plot_example_data, plot_pareto_curve | |
| from processing import processing | |
| def _data_layout(): | |
| with gr.Tab("Example Data"): | |
| # Plot of the example data: | |
| with gr.Row(): | |
| with gr.Column(): | |
| example_plot = gr.Plot() | |
| with gr.Column(): | |
| test_equation = gr.Radio( | |
| test_equations, value=test_equations[0], label="Test Equation" | |
| ) | |
| num_points = gr.Slider( | |
| minimum=10, | |
| maximum=1000, | |
| value=200, | |
| label="Number of Data Points", | |
| step=1, | |
| ) | |
| noise_level = gr.Slider( | |
| minimum=0, maximum=1, value=0.05, label="Noise Level" | |
| ) | |
| data_seed = gr.Number(value=0, label="Random Seed") | |
| with gr.Tab("Upload Data"): | |
| file_input = gr.File(label="Upload a CSV File") | |
| gr.Markdown( | |
| "The rightmost column of your CSV file will be used as the target variable." | |
| ) | |
| return dict( | |
| file_input=file_input, | |
| test_equation=test_equation, | |
| num_points=num_points, | |
| noise_level=noise_level, | |
| data_seed=data_seed, | |
| example_plot=example_plot, | |
| ) | |
| def _settings_layout(): | |
| with gr.Tab("Basic Settings"): | |
| binary_operators = gr.CheckboxGroup( | |
| choices=["+", "-", "*", "/", "^", "max", "min", "mod", "cond"], | |
| label="Binary Operators", | |
| value=["+", "-", "*", "/"], | |
| ) | |
| unary_operators = gr.CheckboxGroup( | |
| choices=[ | |
| "sin", | |
| "cos", | |
| "tan", | |
| "exp", | |
| "log", | |
| "square", | |
| "cube", | |
| "sqrt", | |
| "abs", | |
| "erf", | |
| "relu", | |
| "round", | |
| "sign", | |
| ], | |
| label="Unary Operators", | |
| value=["sin"], | |
| ) | |
| niterations = gr.Slider( | |
| minimum=1, | |
| maximum=1000, | |
| value=40, | |
| label="Number of Iterations", | |
| step=1, | |
| ) | |
| maxsize = gr.Slider( | |
| minimum=7, | |
| maximum=100, | |
| value=20, | |
| label="Maximum Complexity", | |
| step=1, | |
| ) | |
| parsimony = gr.Number( | |
| value=0.0032, | |
| label="Parsimony Coefficient", | |
| ) | |
| with gr.Tab("Advanced Settings"): | |
| populations = gr.Slider( | |
| minimum=2, | |
| maximum=100, | |
| value=15, | |
| label="Number of Populations", | |
| step=1, | |
| ) | |
| population_size = gr.Slider( | |
| minimum=2, | |
| maximum=1000, | |
| value=33, | |
| label="Population Size", | |
| step=1, | |
| ) | |
| ncycles_per_iteration = gr.Number( | |
| value=550, | |
| label="Cycles per Iteration", | |
| ) | |
| elementwise_loss = gr.Radio( | |
| ["L2DistLoss()", "L1DistLoss()", "LogitDistLoss()", "HuberLoss()"], | |
| value="L2DistLoss()", | |
| label="Loss Function", | |
| ) | |
| adaptive_parsimony_scaling = gr.Number( | |
| value=20.0, | |
| label="Adaptive Parsimony Scaling", | |
| ) | |
| optimizer_algorithm = gr.Radio( | |
| ["BFGS", "NelderMead"], | |
| value="BFGS", | |
| label="Optimizer Algorithm", | |
| ) | |
| optimizer_iterations = gr.Slider( | |
| minimum=1, | |
| maximum=100, | |
| value=8, | |
| label="Optimizer Iterations", | |
| step=1, | |
| ) | |
| # Bool: | |
| batching = gr.Checkbox( | |
| value=False, | |
| label="Batching", | |
| ) | |
| batch_size = gr.Slider( | |
| minimum=2, | |
| maximum=1000, | |
| value=50, | |
| label="Batch Size", | |
| step=1, | |
| ) | |
| with gr.Tab("Gradio Settings"): | |
| plot_update_delay = gr.Slider( | |
| minimum=1, | |
| maximum=100, | |
| value=3, | |
| label="Plot Update Delay", | |
| ) | |
| force_run = gr.Checkbox( | |
| value=False, | |
| label="Ignore Warnings", | |
| ) | |
| return dict( | |
| binary_operators=binary_operators, | |
| unary_operators=unary_operators, | |
| niterations=niterations, | |
| maxsize=maxsize, | |
| force_run=force_run, | |
| plot_update_delay=plot_update_delay, | |
| parsimony=parsimony, | |
| populations=populations, | |
| population_size=population_size, | |
| ncycles_per_iteration=ncycles_per_iteration, | |
| elementwise_loss=elementwise_loss, | |
| adaptive_parsimony_scaling=adaptive_parsimony_scaling, | |
| optimizer_algorithm=optimizer_algorithm, | |
| optimizer_iterations=optimizer_iterations, | |
| batching=batching, | |
| batch_size=batch_size, | |
| ) | |
| def main(): | |
| blocks = {} | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| blocks = {**blocks, **_data_layout()} | |
| with gr.Row(): | |
| blocks = {**blocks, **_settings_layout()} | |
| with gr.Column(): | |
| with gr.Tab("Pareto Front"): | |
| blocks["pareto"] = gr.Plot() | |
| with gr.Tab("Predictions"): | |
| blocks["predictions_plot"] = gr.Plot() | |
| blocks["df"] = gr.Dataframe( | |
| headers=["complexity", "loss", "equation"], | |
| datatype=["number", "number", "str"], | |
| wrap=True, | |
| column_widths=[75, 75, 200], | |
| interactive=False, | |
| ) | |
| blocks["run"] = gr.Button() | |
| blocks["run"].click( | |
| processing, | |
| inputs=[ | |
| blocks[k] | |
| for k in [ | |
| "file_input", | |
| "force_run", | |
| "test_equation", | |
| "num_points", | |
| "noise_level", | |
| "data_seed", | |
| "niterations", | |
| "maxsize", | |
| "binary_operators", | |
| "unary_operators", | |
| "plot_update_delay", | |
| "parsimony", | |
| "populations", | |
| "population_size", | |
| "ncycles_per_iteration", | |
| "elementwise_loss", | |
| "adaptive_parsimony_scaling", | |
| "optimizer_algorithm", | |
| "optimizer_iterations", | |
| "batching", | |
| "batch_size", | |
| ] | |
| ], | |
| outputs=blocks["df"], | |
| ) | |
| # Any update to the equation choice will trigger a plot_example_data: | |
| eqn_components = [ | |
| blocks["test_equation"], | |
| blocks["num_points"], | |
| blocks["noise_level"], | |
| blocks["data_seed"], | |
| ] | |
| for eqn_component in eqn_components: | |
| eqn_component.change( | |
| plot_example_data, | |
| eqn_components, | |
| blocks["example_plot"], | |
| show_progress=False, | |
| ) | |
| # Update plot when dataframe is updated: | |
| blocks["df"].change( | |
| plot_pareto_curve, | |
| inputs=[blocks["df"], blocks["maxsize"]], | |
| outputs=[blocks["pareto"]], | |
| show_progress=False, | |
| ) | |
| demo.load(plot_example_data, eqn_components, blocks["example_plot"]) | |
| demo.launch(debug=True) | |
| if __name__ == "__main__": | |
| main() | |