Spaces:
Sleeping
Sleeping
Move everything to app.py
Browse files- gui/app.py +36 -13
- gui/run_pysr_and_save.py +0 -71
gui/app.py
CHANGED
|
@@ -1,7 +1,10 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import os
|
| 3 |
-
import tempfile
|
| 4 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
empty_df = pd.DataFrame(
|
| 7 |
{
|
|
@@ -13,7 +16,7 @@ empty_df = pd.DataFrame(
|
|
| 13 |
|
| 14 |
|
| 15 |
def greet(
|
| 16 |
-
file_obj: tempfile._TemporaryFileWrapper,
|
| 17 |
col_to_fit: str,
|
| 18 |
niterations: int,
|
| 19 |
maxsize: int,
|
|
@@ -65,19 +68,39 @@ def greet(
|
|
| 65 |
|
| 66 |
binary_operators = str(binary_operators).replace("'", '"')
|
| 67 |
unary_operators = str(unary_operators).replace("'", '"')
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
)
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
|
|
|
|
|
|
| 81 |
|
| 82 |
def main():
|
| 83 |
demo = gr.Interface(
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
import os
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
+
import pysr
|
| 6 |
+
import tempfile
|
| 7 |
+
from typing import Optional
|
| 8 |
|
| 9 |
empty_df = pd.DataFrame(
|
| 10 |
{
|
|
|
|
| 16 |
|
| 17 |
|
| 18 |
def greet(
|
| 19 |
+
file_obj: Optional[tempfile._TemporaryFileWrapper],
|
| 20 |
col_to_fit: str,
|
| 21 |
niterations: int,
|
| 22 |
maxsize: int,
|
|
|
|
| 68 |
|
| 69 |
binary_operators = str(binary_operators).replace("'", '"')
|
| 70 |
unary_operators = str(unary_operators).replace("'", '"')
|
| 71 |
+
|
| 72 |
+
df = pd.read_csv(file_obj)
|
| 73 |
+
y = np.array(df[col_to_fit])
|
| 74 |
+
X = df.drop([col_to_fit], axis=1)
|
| 75 |
+
|
| 76 |
+
model = pysr.PySRRegressor(
|
| 77 |
+
progress=False,
|
| 78 |
+
verbosity=0,
|
| 79 |
+
maxsize=maxsize,
|
| 80 |
+
niterations=niterations,
|
| 81 |
+
binary_operators=binary_operators,
|
| 82 |
+
unary_operators=unary_operators,
|
| 83 |
)
|
| 84 |
+
model.fit(X, y)
|
| 85 |
+
|
| 86 |
+
df = model.equations_[["equation", "loss", "complexity"]]
|
| 87 |
+
# Convert all columns to string type:
|
| 88 |
+
df = df.astype(str)
|
| 89 |
+
msg = (
|
| 90 |
+
"Success!\n"
|
| 91 |
+
f"You may run the model locally (faster) with "
|
| 92 |
+
f"the following parameters:"
|
| 93 |
+
+f"""
|
| 94 |
+
model = PySRRegressor(
|
| 95 |
+
niterations={niterations},
|
| 96 |
+
binary_operators={str(binary_operators)},
|
| 97 |
+
unary_operators={str(unary_operators)},
|
| 98 |
+
maxsize={maxsize},
|
| 99 |
+
)
|
| 100 |
+
model.fit(X, y)""")
|
| 101 |
|
| 102 |
+
df.to_csv("pysr_output.csv", index=False)
|
| 103 |
+
return df, msg
|
| 104 |
|
| 105 |
def main():
|
| 106 |
demo = gr.Interface(
|
gui/run_pysr_and_save.py
DELETED
|
@@ -1,71 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import pandas as pd
|
| 3 |
-
import traceback as tb
|
| 4 |
-
import numpy as np
|
| 5 |
-
from pysr import PySRRegressor
|
| 6 |
-
from argparse import ArgumentParser
|
| 7 |
-
|
| 8 |
-
# Args:
|
| 9 |
-
# niterations
|
| 10 |
-
# binary_operators
|
| 11 |
-
# unary_operators
|
| 12 |
-
# col_to_fit
|
| 13 |
-
|
| 14 |
-
empty_df = pd.DataFrame(
|
| 15 |
-
{
|
| 16 |
-
"equation": [],
|
| 17 |
-
"loss": [],
|
| 18 |
-
"complexity": [],
|
| 19 |
-
}
|
| 20 |
-
)
|
| 21 |
-
|
| 22 |
-
if __name__ == "__main__":
|
| 23 |
-
parser = ArgumentParser()
|
| 24 |
-
parser.add_argument("--niterations", type=int)
|
| 25 |
-
parser.add_argument("--maxsize", type=int)
|
| 26 |
-
parser.add_argument("--binary_operators", type=str)
|
| 27 |
-
parser.add_argument("--unary_operators", type=str)
|
| 28 |
-
parser.add_argument("--col_to_fit", type=str)
|
| 29 |
-
parser.add_argument("--filename", type=str)
|
| 30 |
-
args = parser.parse_args()
|
| 31 |
-
niterations = args.niterations
|
| 32 |
-
binary_operators = eval(args.binary_operators)
|
| 33 |
-
unary_operators = eval(args.unary_operators)
|
| 34 |
-
col_to_fit = args.col_to_fit
|
| 35 |
-
filename = args.filename
|
| 36 |
-
maxsize = args.maxsize
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
df = pd.read_csv(filename)
|
| 40 |
-
y = np.array(df[col_to_fit])
|
| 41 |
-
X = df.drop([col_to_fit], axis=1)
|
| 42 |
-
|
| 43 |
-
model = PySRRegressor(
|
| 44 |
-
progress=False,
|
| 45 |
-
verbosity=0,
|
| 46 |
-
maxsize=maxsize,
|
| 47 |
-
niterations=niterations,
|
| 48 |
-
binary_operators=binary_operators,
|
| 49 |
-
unary_operators=unary_operators,
|
| 50 |
-
)
|
| 51 |
-
model.fit(X, y)
|
| 52 |
-
|
| 53 |
-
df = model.equations_[["equation", "loss", "complexity"]]
|
| 54 |
-
# Convert all columns to string type:
|
| 55 |
-
df = df.astype(str)
|
| 56 |
-
error_message = (
|
| 57 |
-
"Success!\n"
|
| 58 |
-
f"You may run the model locally (faster) with "
|
| 59 |
-
f"the following parameters:"
|
| 60 |
-
+f"""
|
| 61 |
-
model = PySRRegressor(
|
| 62 |
-
niterations={niterations},
|
| 63 |
-
binary_operators={str(binary_operators)},
|
| 64 |
-
unary_operators={str(unary_operators)},
|
| 65 |
-
maxsize={maxsize},
|
| 66 |
-
)
|
| 67 |
-
model.fit(X, y)""")
|
| 68 |
-
|
| 69 |
-
df.to_csv("pysr_output.csv", index=False)
|
| 70 |
-
with open("error.log", "w") as f:
|
| 71 |
-
f.write(error_message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|