Spaces:
Running
Running
Automatically plot test data
Browse files- gui/app.py +111 -70
- gui/requirements.txt +1 -1
gui/app.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
-
import os
|
| 4 |
import pandas as pd
|
| 5 |
import pysr
|
| 6 |
import tempfile
|
|
@@ -14,18 +13,13 @@ empty_df = pd.DataFrame(
|
|
| 14 |
}
|
| 15 |
)
|
| 16 |
|
| 17 |
-
test_equations =
|
| 18 |
-
"
|
| 19 |
-
|
| 20 |
-
"Trigonometric Polynomial": "sin(x) + cos(2*x) + tan(x/3)",
|
| 21 |
-
"Mixed Functions": "sqrt(x)*exp(-x) + cos(pi*x)",
|
| 22 |
-
"Rational Function": "(x^2 + 1) / (x - 2)",
|
| 23 |
-
}
|
| 24 |
|
| 25 |
|
| 26 |
-
def generate_data(
|
| 27 |
-
x = np.linspace(
|
| 28 |
-
s = test_equations[equation]
|
| 29 |
for (k, v) in {
|
| 30 |
"sin": "np.sin",
|
| 31 |
"cos": "np.cos",
|
|
@@ -117,68 +111,115 @@ model.fit(X, y)"""
|
|
| 117 |
|
| 118 |
|
| 119 |
def main():
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
demo.launch()
|
| 181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
if __name__ == "__main__":
|
| 184 |
main()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
import pysr
|
| 5 |
import tempfile
|
|
|
|
| 13 |
}
|
| 14 |
)
|
| 15 |
|
| 16 |
+
test_equations = [
|
| 17 |
+
"sin(x) + cos(2*x) + tan(x/3)",
|
| 18 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
|
| 21 |
+
def generate_data(s: str, num_points: int, noise_level: float):
|
| 22 |
+
x = np.linspace(0, 10, num_points)
|
|
|
|
| 23 |
for (k, v) in {
|
| 24 |
"sin": "np.sin",
|
| 25 |
"cos": "np.cos",
|
|
|
|
| 111 |
|
| 112 |
|
| 113 |
def main():
|
| 114 |
+
with gr.Blocks() as demo:
|
| 115 |
+
with gr.Row():
|
| 116 |
+
with gr.Column():
|
| 117 |
+
with gr.Row():
|
| 118 |
+
with gr.Tab("Example Data"):
|
| 119 |
+
# Plot of the example data:
|
| 120 |
+
example_plot = gr.ScatterPlot(
|
| 121 |
+
x="x",
|
| 122 |
+
y="y",
|
| 123 |
+
tooltip=["x", "y"],
|
| 124 |
+
x_lim=[0, 10],
|
| 125 |
+
y_lim=[-5, 5],
|
| 126 |
+
width=350,
|
| 127 |
+
height=300,
|
| 128 |
+
)
|
| 129 |
+
test_equation = gr.Radio(
|
| 130 |
+
test_equations,
|
| 131 |
+
value=test_equations[0],
|
| 132 |
+
label="Test Equation"
|
| 133 |
+
)
|
| 134 |
+
num_points = gr.Slider(
|
| 135 |
+
minimum=10,
|
| 136 |
+
maximum=1000,
|
| 137 |
+
value=100,
|
| 138 |
+
label="Number of Data Points",
|
| 139 |
+
step=1,
|
| 140 |
+
)
|
| 141 |
+
noise_level = gr.Slider(
|
| 142 |
+
minimum=0, maximum=1, value=0.1, label="Noise Level"
|
| 143 |
+
)
|
| 144 |
+
with gr.Tab("Upload Data"):
|
| 145 |
+
file_input = gr.File(label="Upload a CSV File")
|
| 146 |
+
with gr.Row():
|
| 147 |
+
binary_operators = gr.CheckboxGroup(
|
| 148 |
+
choices=["+", "-", "*", "/", "^"],
|
| 149 |
+
label="Binary Operators",
|
| 150 |
+
value=["+", "-", "*", "/"],
|
| 151 |
+
)
|
| 152 |
+
unary_operators = gr.CheckboxGroup(
|
| 153 |
+
choices=[
|
| 154 |
+
"sin",
|
| 155 |
+
"cos",
|
| 156 |
+
"exp",
|
| 157 |
+
"log",
|
| 158 |
+
"square",
|
| 159 |
+
"cube",
|
| 160 |
+
"sqrt",
|
| 161 |
+
"abs",
|
| 162 |
+
"tan",
|
| 163 |
+
],
|
| 164 |
+
label="Unary Operators",
|
| 165 |
+
value=[],
|
| 166 |
+
)
|
| 167 |
+
niterations = gr.Slider(
|
| 168 |
+
minimum=1,
|
| 169 |
+
maximum=1000,
|
| 170 |
+
value=40,
|
| 171 |
+
label="Number of Iterations",
|
| 172 |
+
step=1,
|
| 173 |
+
)
|
| 174 |
+
maxsize = gr.Slider(
|
| 175 |
+
minimum=7,
|
| 176 |
+
maximum=35,
|
| 177 |
+
value=20,
|
| 178 |
+
label="Maximum Complexity",
|
| 179 |
+
step=1,
|
| 180 |
+
)
|
| 181 |
+
force_run = gr.Checkbox(
|
| 182 |
+
value=False,
|
| 183 |
+
label="Ignore Warnings",
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
with gr.Column():
|
| 187 |
+
with gr.Row():
|
| 188 |
+
df = gr.Dataframe(
|
| 189 |
+
headers=["Equation", "Loss", "Complexity"],
|
| 190 |
+
datatype=["str", "number", "number"],
|
| 191 |
+
)
|
| 192 |
+
error_log = gr.Textbox(label="Error Log")
|
| 193 |
+
with gr.Row():
|
| 194 |
+
run_button = gr.Button()
|
| 195 |
+
|
| 196 |
+
run_button.click(
|
| 197 |
+
greet,
|
| 198 |
+
inputs=[
|
| 199 |
+
file_input,
|
| 200 |
+
test_equation,
|
| 201 |
+
num_points,
|
| 202 |
+
noise_level,
|
| 203 |
+
niterations,
|
| 204 |
+
maxsize,
|
| 205 |
+
binary_operators,
|
| 206 |
+
unary_operators,
|
| 207 |
+
force_run,
|
| 208 |
+
],
|
| 209 |
+
outputs=[df, error_log],
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
# Any update to the equation choice will trigger a replot:
|
| 213 |
+
for eqn_component in [test_equation, num_points, noise_level]:
|
| 214 |
+
eqn_component.change(replot, [test_equation, num_points, noise_level], example_plot)
|
| 215 |
|
| 216 |
demo.launch()
|
| 217 |
|
| 218 |
+
def replot(test_equation, num_points, noise_level):
|
| 219 |
+
X, y = generate_data(test_equation, num_points, noise_level)
|
| 220 |
+
df = pd.DataFrame({"x": X["x"], "y": y})
|
| 221 |
+
return df
|
| 222 |
+
|
| 223 |
|
| 224 |
if __name__ == "__main__":
|
| 225 |
main()
|
gui/requirements.txt
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
pysr==0.18.1
|
| 2 |
numpy
|
| 3 |
pandas
|
| 4 |
-
gradio
|
|
|
|
| 1 |
pysr==0.18.1
|
| 2 |
numpy
|
| 3 |
pandas
|
| 4 |
+
gradio
|