Spaces:
Sleeping
Sleeping
Update to PySR 0.18.1
Browse files- gui/app.py +0 -2
- gui/install_pysr.sh +0 -14
- gui/requirements.txt +1 -1
- gui/run_pysr_and_save.py +17 -32
gui/app.py
CHANGED
|
@@ -11,8 +11,6 @@ empty_df = pd.DataFrame(
|
|
| 11 |
}
|
| 12 |
)
|
| 13 |
|
| 14 |
-
os.system("bash install_pysr.sh")
|
| 15 |
-
|
| 16 |
|
| 17 |
def greet(
|
| 18 |
file_obj: tempfile._TemporaryFileWrapper,
|
|
|
|
| 11 |
}
|
| 12 |
)
|
| 13 |
|
|
|
|
|
|
|
| 14 |
|
| 15 |
def greet(
|
| 16 |
file_obj: tempfile._TemporaryFileWrapper,
|
gui/install_pysr.sh
DELETED
|
@@ -1,14 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
|
| 3 |
-
# Install Julia:
|
| 4 |
-
if [ ! -f "/home/user/.local/bin/julia" ]; then
|
| 5 |
-
wget https://raw.githubusercontent.com/abelsiqueira/jill/main/jill.sh
|
| 6 |
-
chmod a+x jill.sh
|
| 7 |
-
./jill.sh --version 1.8.2 -y
|
| 8 |
-
fi
|
| 9 |
-
|
| 10 |
-
# Need to install PySR in separate python instance:
|
| 11 |
-
if [ ! -d "/home/user/.julia/environments/pysr-0.11.9" ]; then
|
| 12 |
-
export PATH="$HOME/.local/bin:$PATH"
|
| 13 |
-
python -c 'import pysr; pysr.install()'
|
| 14 |
-
fi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gui/requirements.txt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
-
pysr==0.
|
| 2 |
numpy
|
| 3 |
pandas
|
|
|
|
| 1 |
+
pysr==0.18.1
|
| 2 |
numpy
|
| 3 |
pandas
|
gui/run_pysr_and_save.py
CHANGED
|
@@ -2,6 +2,7 @@ import os
|
|
| 2 |
import pandas as pd
|
| 3 |
import traceback as tb
|
| 4 |
import numpy as np
|
|
|
|
| 5 |
from argparse import ArgumentParser
|
| 6 |
|
| 7 |
# Args:
|
|
@@ -34,37 +35,25 @@ if __name__ == "__main__":
|
|
| 34 |
filename = args.filename
|
| 35 |
maxsize = args.maxsize
|
| 36 |
|
| 37 |
-
os.environ["PATH"] += ":/home/user/.local/bin/"
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
df = pd.read_csv(filename)
|
| 51 |
-
y = np.array(df[col_to_fit])
|
| 52 |
-
X = df.drop([col_to_fit], axis=1)
|
| 53 |
-
|
| 54 |
-
model = PySRRegressor(
|
| 55 |
-
update=False,
|
| 56 |
-
progress=False,
|
| 57 |
-
maxsize=maxsize,
|
| 58 |
-
niterations=niterations,
|
| 59 |
-
binary_operators=binary_operators,
|
| 60 |
-
unary_operators=unary_operators,
|
| 61 |
-
)
|
| 62 |
-
model.fit(X, y)
|
| 63 |
-
|
| 64 |
-
df = model.equations_[["equation", "loss", "complexity"]]
|
| 65 |
-
# Convert all columns to string type:
|
| 66 |
-
df = df.astype(str)
|
| 67 |
-
error_message = (
|
| 68 |
"Success!\n"
|
| 69 |
f"You may run the model locally (faster) with "
|
| 70 |
f"the following parameters:"
|
|
@@ -76,10 +65,6 @@ model = PySRRegressor(
|
|
| 76 |
maxsize={maxsize},
|
| 77 |
)
|
| 78 |
model.fit(X, y)""")
|
| 79 |
-
except Exception as e:
|
| 80 |
-
error_message = tb.format_exc()
|
| 81 |
-
# Dump to file:
|
| 82 |
-
df = empty_df
|
| 83 |
|
| 84 |
df.to_csv("pysr_output.csv", index=False)
|
| 85 |
with open("error.log", "w") as f:
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
import traceback as tb
|
| 4 |
import numpy as np
|
| 5 |
+
from pysr import PySRRegressor
|
| 6 |
from argparse import ArgumentParser
|
| 7 |
|
| 8 |
# Args:
|
|
|
|
| 35 |
filename = args.filename
|
| 36 |
maxsize = args.maxsize
|
| 37 |
|
|
|
|
| 38 |
|
| 39 |
+
df = pd.read_csv(filename)
|
| 40 |
+
y = np.array(df[col_to_fit])
|
| 41 |
+
X = df.drop([col_to_fit], axis=1)
|
| 42 |
|
| 43 |
+
model = PySRRegressor(
|
| 44 |
+
progress=False,
|
| 45 |
+
verbosity=0,
|
| 46 |
+
maxsize=maxsize,
|
| 47 |
+
niterations=niterations,
|
| 48 |
+
binary_operators=binary_operators,
|
| 49 |
+
unary_operators=unary_operators,
|
| 50 |
+
)
|
| 51 |
+
model.fit(X, y)
|
| 52 |
|
| 53 |
+
df = model.equations_[["equation", "loss", "complexity"]]
|
| 54 |
+
# Convert all columns to string type:
|
| 55 |
+
df = df.astype(str)
|
| 56 |
+
error_message = (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
"Success!\n"
|
| 58 |
f"You may run the model locally (faster) with "
|
| 59 |
f"the following parameters:"
|
|
|
|
| 65 |
maxsize={maxsize},
|
| 66 |
)
|
| 67 |
model.fit(X, y)""")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
df.to_csv("pysr_output.csv", index=False)
|
| 70 |
with open("error.log", "w") as f:
|