Spaces:
Running
Running
Working prediction plot
Browse files- gui/app.py +2 -1
- gui/plots.py +14 -0
- gui/processing.py +5 -1
gui/app.py
CHANGED
|
@@ -222,7 +222,8 @@ def main():
|
|
| 222 |
"batch_size",
|
| 223 |
]
|
| 224 |
],
|
| 225 |
-
outputs=blocks["df"],
|
|
|
|
| 226 |
)
|
| 227 |
|
| 228 |
# Any update to the equation choice will trigger a plot_example_data:
|
|
|
|
| 222 |
"batch_size",
|
| 223 |
]
|
| 224 |
],
|
| 225 |
+
outputs=[blocks["df"], blocks["predictions_plot"]],
|
| 226 |
+
show_progress=True,
|
| 227 |
)
|
| 228 |
|
| 229 |
# Any update to the equation choice will trigger a plot_example_data:
|
gui/plots.py
CHANGED
|
@@ -61,6 +61,20 @@ def plot_example_data(test_equation, num_points, noise_level, data_seed):
|
|
| 61 |
return fig
|
| 62 |
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
def stylize_axis(ax):
|
| 65 |
ax.grid(True, which="both", ls="--", linewidth=0.5, color="gray", alpha=0.5)
|
| 66 |
ax.spines["top"].set_visible(False)
|
|
|
|
| 61 |
return fig
|
| 62 |
|
| 63 |
|
| 64 |
+
def plot_predictions(y, ypred):
|
| 65 |
+
fig, ax = plt.subplots(figsize=(6, 6), dpi=100)
|
| 66 |
+
|
| 67 |
+
ax.scatter(y, ypred, alpha=0.7, edgecolors="w", s=50)
|
| 68 |
+
|
| 69 |
+
stylize_axis(ax)
|
| 70 |
+
|
| 71 |
+
ax.set_xlabel("true")
|
| 72 |
+
ax.set_ylabel("prediction")
|
| 73 |
+
fig.tight_layout(pad=2)
|
| 74 |
+
|
| 75 |
+
return fig
|
| 76 |
+
|
| 77 |
+
|
| 78 |
def stylize_axis(ax):
|
| 79 |
ax.grid(True, which="both", ls="--", linewidth=0.5, color="gray", alpha=0.5)
|
| 80 |
ax.spines["top"].set_visible(False)
|
gui/processing.py
CHANGED
|
@@ -7,6 +7,7 @@ from typing import Callable
|
|
| 7 |
|
| 8 |
import pandas as pd
|
| 9 |
from data import generate_data, read_csv
|
|
|
|
| 10 |
|
| 11 |
EMPTY_DF = lambda: pd.DataFrame(
|
| 12 |
{
|
|
@@ -188,7 +189,10 @@ def processing(
|
|
| 188 |
)
|
| 189 |
)
|
| 190 |
out = PERSISTENT_READER.out_queue.get()
|
|
|
|
| 191 |
equations = out["equations"]
|
| 192 |
-
yield equations[["Complexity", "Loss", "Equation"]]
|
|
|
|
|
|
|
| 193 |
|
| 194 |
time.sleep(0.1)
|
|
|
|
| 7 |
|
| 8 |
import pandas as pd
|
| 9 |
from data import generate_data, read_csv
|
| 10 |
+
from plots import plot_predictions
|
| 11 |
|
| 12 |
EMPTY_DF = lambda: pd.DataFrame(
|
| 13 |
{
|
|
|
|
| 189 |
)
|
| 190 |
)
|
| 191 |
out = PERSISTENT_READER.out_queue.get()
|
| 192 |
+
predictions = out["ypred"]
|
| 193 |
equations = out["equations"]
|
| 194 |
+
yield equations[["Complexity", "Loss", "Equation"]], plot_predictions(
|
| 195 |
+
y, predictions
|
| 196 |
+
)
|
| 197 |
|
| 198 |
time.sleep(0.1)
|