Spaces:
Running
Running
Commit
·
90d24f5
1
Parent(s):
555ddd0
Update more parts of docs
Browse files- docs/examples.md +11 -11
docs/examples.md
CHANGED
|
@@ -23,8 +23,9 @@ find the expression `2 cos(x3) + x0^2 - 2`.
|
|
| 23 |
```python
|
| 24 |
X = 2 * np.random.randn(100, 5)
|
| 25 |
y = 2 * np.cos(X[:, 3]) + X[:, 0] ** 2 - 2
|
| 26 |
-
|
| 27 |
-
|
|
|
|
| 28 |
```
|
| 29 |
|
| 30 |
## 2. Custom operator
|
|
@@ -34,14 +35,13 @@ Here, we define a custom operator and use it to find an expression:
|
|
| 34 |
```python
|
| 35 |
X = 2 * np.random.randn(100, 5)
|
| 36 |
y = 1 / X[:, 0]
|
| 37 |
-
|
| 38 |
-
X,
|
| 39 |
-
y,
|
| 40 |
binary_operators=["plus", "mult"],
|
| 41 |
unary_operators=["inv(x) = 1/x"],
|
| 42 |
**kwargs
|
| 43 |
)
|
| 44 |
-
|
|
|
|
| 45 |
```
|
| 46 |
|
| 47 |
## 3. Multiple outputs
|
|
@@ -51,23 +51,23 @@ each requiring a different feature.
|
|
| 51 |
```python
|
| 52 |
X = 2 * np.random.randn(100, 5)
|
| 53 |
y = 1 / X[:, [0, 1, 2]]
|
| 54 |
-
|
| 55 |
-
X,
|
| 56 |
-
y,
|
| 57 |
binary_operators=["plus", "mult"],
|
| 58 |
unary_operators=["inv(x) = 1/x"],
|
| 59 |
**kwargs
|
| 60 |
)
|
|
|
|
| 61 |
```
|
| 62 |
|
| 63 |
## 4. Plotting an expression
|
| 64 |
|
| 65 |
Here, let's use the same equations, but get a format we can actually
|
| 66 |
-
use and test. We can add this option after a search via the `
|
| 67 |
function:
|
| 68 |
|
| 69 |
```python
|
| 70 |
-
|
|
|
|
| 71 |
```
|
| 72 |
If you look at the lists of expressions before and after, you will
|
| 73 |
see that the sympy format now has replaced `inv` with `1/`.
|
|
|
|
| 23 |
```python
|
| 24 |
X = 2 * np.random.randn(100, 5)
|
| 25 |
y = 2 * np.cos(X[:, 3]) + X[:, 0] ** 2 - 2
|
| 26 |
+
model = PySRRegressor(binary_operators=["+", "-", "*", "/"], **kwargs)
|
| 27 |
+
model.fit(X, y)
|
| 28 |
+
print(model)
|
| 29 |
```
|
| 30 |
|
| 31 |
## 2. Custom operator
|
|
|
|
| 35 |
```python
|
| 36 |
X = 2 * np.random.randn(100, 5)
|
| 37 |
y = 1 / X[:, 0]
|
| 38 |
+
model = PySRRegressor(
|
|
|
|
|
|
|
| 39 |
binary_operators=["plus", "mult"],
|
| 40 |
unary_operators=["inv(x) = 1/x"],
|
| 41 |
**kwargs
|
| 42 |
)
|
| 43 |
+
model.fit(X, y)
|
| 44 |
+
print(model)
|
| 45 |
```
|
| 46 |
|
| 47 |
## 3. Multiple outputs
|
|
|
|
| 51 |
```python
|
| 52 |
X = 2 * np.random.randn(100, 5)
|
| 53 |
y = 1 / X[:, [0, 1, 2]]
|
| 54 |
+
model = PySRRegressor(
|
|
|
|
|
|
|
| 55 |
binary_operators=["plus", "mult"],
|
| 56 |
unary_operators=["inv(x) = 1/x"],
|
| 57 |
**kwargs
|
| 58 |
)
|
| 59 |
+
model.fit(X, y)
|
| 60 |
```
|
| 61 |
|
| 62 |
## 4. Plotting an expression
|
| 63 |
|
| 64 |
Here, let's use the same equations, but get a format we can actually
|
| 65 |
+
use and test. We can add this option after a search via the `set_params`
|
| 66 |
function:
|
| 67 |
|
| 68 |
```python
|
| 69 |
+
model.set_params(extra_sympy_mappings={"inv": lambda x: 1/x})
|
| 70 |
+
model.sympy()
|
| 71 |
```
|
| 72 |
If you look at the lists of expressions before and after, you will
|
| 73 |
see that the sympy format now has replaced `inv` with `1/`.
|