Spaces:
Running
Running
Clean up torch tests
Browse files- pysr/test/test_torch.py +15 -33
pysr/test/test_torch.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
import platform
|
| 2 |
import unittest
|
| 3 |
|
| 4 |
import numpy as np
|
|
@@ -7,42 +6,28 @@ import sympy
|
|
| 7 |
|
| 8 |
from .. import PySRRegressor, sympy2torch
|
| 9 |
|
| 10 |
-
# Need to initialize Julia before importing torch...
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
def _import_torch():
|
| 14 |
-
if platform.system() == "Darwin":
|
| 15 |
-
# Import PyJulia, then Torch
|
| 16 |
-
from ..julia_helpers import init_julia
|
| 17 |
-
|
| 18 |
-
init_julia()
|
| 19 |
-
|
| 20 |
-
import torch
|
| 21 |
-
else:
|
| 22 |
-
# Import Torch, then PyJulia
|
| 23 |
-
# https://github.com/pytorch/pytorch/issues/78829
|
| 24 |
-
import torch
|
| 25 |
-
return torch
|
| 26 |
-
|
| 27 |
|
| 28 |
class TestTorch(unittest.TestCase):
|
| 29 |
def setUp(self):
|
| 30 |
np.random.seed(0)
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
def test_sympy2torch(self):
|
| 33 |
-
torch = _import_torch()
|
| 34 |
x, y, z = sympy.symbols("x y z")
|
| 35 |
cosx = 1.0 * sympy.cos(x) + y
|
| 36 |
|
| 37 |
-
X = torch.tensor(np.random.randn(1000, 3))
|
| 38 |
-
true = 1.0 * torch.cos(X[:, 0]) + X[:, 1]
|
| 39 |
torch_module = sympy2torch(cosx, [x, y, z])
|
| 40 |
self.assertTrue(
|
| 41 |
np.all(np.isclose(torch_module(X).detach().numpy(), true.detach().numpy()))
|
| 42 |
)
|
| 43 |
|
| 44 |
def test_pipeline_pandas(self):
|
| 45 |
-
torch = _import_torch()
|
| 46 |
X = pd.DataFrame(np.random.randn(100, 10))
|
| 47 |
y = np.ones(X.shape[0])
|
| 48 |
model = PySRRegressor(
|
|
@@ -71,13 +56,12 @@ class TestTorch(unittest.TestCase):
|
|
| 71 |
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
|
| 72 |
|
| 73 |
np.testing.assert_almost_equal(
|
| 74 |
-
tformat(torch.tensor(X.values)).detach().numpy(),
|
| 75 |
np.square(np.cos(X.values[:, 1])), # Selection 1st feature
|
| 76 |
decimal=3,
|
| 77 |
)
|
| 78 |
|
| 79 |
def test_pipeline(self):
|
| 80 |
-
torch = _import_torch()
|
| 81 |
X = np.random.randn(100, 10)
|
| 82 |
y = np.ones(X.shape[0])
|
| 83 |
model = PySRRegressor(
|
|
@@ -106,22 +90,22 @@ class TestTorch(unittest.TestCase):
|
|
| 106 |
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
|
| 107 |
|
| 108 |
np.testing.assert_almost_equal(
|
| 109 |
-
tformat(torch.tensor(X)).detach().numpy(),
|
| 110 |
np.square(np.cos(X[:, 1])), # 2nd feature
|
| 111 |
decimal=3,
|
| 112 |
)
|
| 113 |
|
| 114 |
def test_mod_mapping(self):
|
| 115 |
-
torch = _import_torch()
|
| 116 |
x, y, z = sympy.symbols("x y z")
|
| 117 |
expression = x**2 + sympy.atanh(sympy.Mod(y + 1, 2) - 1) * 3.2 * z
|
| 118 |
|
| 119 |
module = sympy2torch(expression, [x, y, z])
|
| 120 |
|
| 121 |
-
X = torch.rand(100, 3).float() * 10
|
| 122 |
|
| 123 |
true_out = (
|
| 124 |
-
X[:, 0] ** 2
|
|
|
|
| 125 |
)
|
| 126 |
torch_out = module(X)
|
| 127 |
|
|
@@ -130,7 +114,6 @@ class TestTorch(unittest.TestCase):
|
|
| 130 |
)
|
| 131 |
|
| 132 |
def test_custom_operator(self):
|
| 133 |
-
torch = _import_torch()
|
| 134 |
X = np.random.randn(100, 3)
|
| 135 |
y = np.ones(X.shape[0])
|
| 136 |
model = PySRRegressor(
|
|
@@ -156,7 +139,7 @@ class TestTorch(unittest.TestCase):
|
|
| 156 |
model.set_params(
|
| 157 |
equation_file="equation_file_custom_operator.csv",
|
| 158 |
extra_sympy_mappings={"mycustomoperator": sympy.sin},
|
| 159 |
-
extra_torch_mappings={"mycustomoperator": torch.sin},
|
| 160 |
)
|
| 161 |
model.refresh(checkpoint_file="equation_file_custom_operator.csv")
|
| 162 |
self.assertEqual(str(model.sympy()), "sin(x1)")
|
|
@@ -165,13 +148,12 @@ class TestTorch(unittest.TestCase):
|
|
| 165 |
tformat = model.pytorch()
|
| 166 |
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=sin(x1))")
|
| 167 |
np.testing.assert_almost_equal(
|
| 168 |
-
tformat(torch.tensor(X)).detach().numpy(),
|
| 169 |
np.sin(X[:, 1]),
|
| 170 |
decimal=3,
|
| 171 |
)
|
| 172 |
|
| 173 |
def test_feature_selection_custom_operators(self):
|
| 174 |
-
torch = _import_torch()
|
| 175 |
rstate = np.random.RandomState(0)
|
| 176 |
X = pd.DataFrame({f"k{i}": rstate.randn(2000) for i in range(10, 21)})
|
| 177 |
cos_approx = lambda x: 1 - (x**2) / 2 + (x**4) / 24 + (x**6) / 720
|
|
@@ -196,7 +178,7 @@ class TestTorch(unittest.TestCase):
|
|
| 196 |
|
| 197 |
np_output = model.predict(X.values)
|
| 198 |
|
| 199 |
-
torch_output = torch_module(torch.tensor(X.values)).detach().numpy()
|
| 200 |
|
| 201 |
np.testing.assert_almost_equal(y.values, np_output, decimal=3)
|
| 202 |
np.testing.assert_almost_equal(y.values, torch_output, decimal=3)
|
|
|
|
|
|
|
| 1 |
import unittest
|
| 2 |
|
| 3 |
import numpy as np
|
|
|
|
| 6 |
|
| 7 |
from .. import PySRRegressor, sympy2torch
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
class TestTorch(unittest.TestCase):
|
| 11 |
def setUp(self):
|
| 12 |
np.random.seed(0)
|
| 13 |
|
| 14 |
+
# Need to import after juliacall:
|
| 15 |
+
import torch
|
| 16 |
+
|
| 17 |
+
self.torch = torch
|
| 18 |
+
|
| 19 |
def test_sympy2torch(self):
|
|
|
|
| 20 |
x, y, z = sympy.symbols("x y z")
|
| 21 |
cosx = 1.0 * sympy.cos(x) + y
|
| 22 |
|
| 23 |
+
X = self.torch.tensor(np.random.randn(1000, 3))
|
| 24 |
+
true = 1.0 * self.torch.cos(X[:, 0]) + X[:, 1]
|
| 25 |
torch_module = sympy2torch(cosx, [x, y, z])
|
| 26 |
self.assertTrue(
|
| 27 |
np.all(np.isclose(torch_module(X).detach().numpy(), true.detach().numpy()))
|
| 28 |
)
|
| 29 |
|
| 30 |
def test_pipeline_pandas(self):
|
|
|
|
| 31 |
X = pd.DataFrame(np.random.randn(100, 10))
|
| 32 |
y = np.ones(X.shape[0])
|
| 33 |
model = PySRRegressor(
|
|
|
|
| 56 |
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
|
| 57 |
|
| 58 |
np.testing.assert_almost_equal(
|
| 59 |
+
tformat(self.torch.tensor(X.values)).detach().numpy(),
|
| 60 |
np.square(np.cos(X.values[:, 1])), # Selection 1st feature
|
| 61 |
decimal=3,
|
| 62 |
)
|
| 63 |
|
| 64 |
def test_pipeline(self):
|
|
|
|
| 65 |
X = np.random.randn(100, 10)
|
| 66 |
y = np.ones(X.shape[0])
|
| 67 |
model = PySRRegressor(
|
|
|
|
| 90 |
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=cos(x1)**2)")
|
| 91 |
|
| 92 |
np.testing.assert_almost_equal(
|
| 93 |
+
tformat(self.torch.tensor(X)).detach().numpy(),
|
| 94 |
np.square(np.cos(X[:, 1])), # 2nd feature
|
| 95 |
decimal=3,
|
| 96 |
)
|
| 97 |
|
| 98 |
def test_mod_mapping(self):
|
|
|
|
| 99 |
x, y, z = sympy.symbols("x y z")
|
| 100 |
expression = x**2 + sympy.atanh(sympy.Mod(y + 1, 2) - 1) * 3.2 * z
|
| 101 |
|
| 102 |
module = sympy2torch(expression, [x, y, z])
|
| 103 |
|
| 104 |
+
X = self.torch.rand(100, 3).float() * 10
|
| 105 |
|
| 106 |
true_out = (
|
| 107 |
+
X[:, 0] ** 2
|
| 108 |
+
+ self.torch.atanh(self.torch.fmod(X[:, 1] + 1, 2) - 1) * 3.2 * X[:, 2]
|
| 109 |
)
|
| 110 |
torch_out = module(X)
|
| 111 |
|
|
|
|
| 114 |
)
|
| 115 |
|
| 116 |
def test_custom_operator(self):
|
|
|
|
| 117 |
X = np.random.randn(100, 3)
|
| 118 |
y = np.ones(X.shape[0])
|
| 119 |
model = PySRRegressor(
|
|
|
|
| 139 |
model.set_params(
|
| 140 |
equation_file="equation_file_custom_operator.csv",
|
| 141 |
extra_sympy_mappings={"mycustomoperator": sympy.sin},
|
| 142 |
+
extra_torch_mappings={"mycustomoperator": self.torch.sin},
|
| 143 |
)
|
| 144 |
model.refresh(checkpoint_file="equation_file_custom_operator.csv")
|
| 145 |
self.assertEqual(str(model.sympy()), "sin(x1)")
|
|
|
|
| 148 |
tformat = model.pytorch()
|
| 149 |
self.assertEqual(str(tformat), "_SingleSymPyModule(expression=sin(x1))")
|
| 150 |
np.testing.assert_almost_equal(
|
| 151 |
+
tformat(self.torch.tensor(X)).detach().numpy(),
|
| 152 |
np.sin(X[:, 1]),
|
| 153 |
decimal=3,
|
| 154 |
)
|
| 155 |
|
| 156 |
def test_feature_selection_custom_operators(self):
|
|
|
|
| 157 |
rstate = np.random.RandomState(0)
|
| 158 |
X = pd.DataFrame({f"k{i}": rstate.randn(2000) for i in range(10, 21)})
|
| 159 |
cos_approx = lambda x: 1 - (x**2) / 2 + (x**4) / 24 + (x**6) / 720
|
|
|
|
| 178 |
|
| 179 |
np_output = model.predict(X.values)
|
| 180 |
|
| 181 |
+
torch_output = torch_module(self.torch.tensor(X.values)).detach().numpy()
|
| 182 |
|
| 183 |
np.testing.assert_almost_equal(y.values, np_output, decimal=3)
|
| 184 |
np.testing.assert_almost_equal(y.values, torch_output, decimal=3)
|