Spaces:
Running
Running
Refactor GUI to multiple files
Browse files- gui/app.py +4 -250
- gui/data.py +22 -0
- gui/plots.py +84 -0
- gui/processing.py +150 -0
gui/app.py
CHANGED
|
@@ -1,184 +1,8 @@
|
|
| 1 |
-
import multiprocessing as mp
|
| 2 |
-
import os
|
| 3 |
-
import tempfile
|
| 4 |
-
import time
|
| 5 |
-
from pathlib import Path
|
| 6 |
-
|
| 7 |
import gradio as gr
|
| 8 |
-
import numpy as np
|
| 9 |
-
import pandas as pd
|
| 10 |
-
from matplotlib import pyplot as plt
|
| 11 |
-
|
| 12 |
-
plt.ioff()
|
| 13 |
-
plt.rcParams["font.family"] = [
|
| 14 |
-
"IBM Plex Mono",
|
| 15 |
-
# Fallback fonts:
|
| 16 |
-
"DejaVu Sans Mono",
|
| 17 |
-
"Courier New",
|
| 18 |
-
"monospace",
|
| 19 |
-
]
|
| 20 |
-
|
| 21 |
-
empty_df = lambda: pd.DataFrame(
|
| 22 |
-
{
|
| 23 |
-
"equation": [],
|
| 24 |
-
"loss": [],
|
| 25 |
-
"complexity": [],
|
| 26 |
-
}
|
| 27 |
-
)
|
| 28 |
-
|
| 29 |
-
test_equations = ["sin(2*x)/x + 0.1*x"]
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
def generate_data(s: str, num_points: int, noise_level: float, data_seed: int):
|
| 33 |
-
rstate = np.random.RandomState(data_seed)
|
| 34 |
-
x = rstate.uniform(-10, 10, num_points)
|
| 35 |
-
for k, v in {
|
| 36 |
-
"sin": "np.sin",
|
| 37 |
-
"cos": "np.cos",
|
| 38 |
-
"exp": "np.exp",
|
| 39 |
-
"log": "np.log",
|
| 40 |
-
"tan": "np.tan",
|
| 41 |
-
"^": "**",
|
| 42 |
-
}.items():
|
| 43 |
-
s = s.replace(k, v)
|
| 44 |
-
y = eval(s)
|
| 45 |
-
noise = rstate.normal(0, noise_level, y.shape)
|
| 46 |
-
y_noisy = y + noise
|
| 47 |
-
return pd.DataFrame({"x": x}), y_noisy
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
def _greet_dispatch(
|
| 51 |
-
file_input,
|
| 52 |
-
force_run,
|
| 53 |
-
test_equation,
|
| 54 |
-
num_points,
|
| 55 |
-
noise_level,
|
| 56 |
-
data_seed,
|
| 57 |
-
niterations,
|
| 58 |
-
maxsize,
|
| 59 |
-
binary_operators,
|
| 60 |
-
unary_operators,
|
| 61 |
-
plot_update_delay,
|
| 62 |
-
parsimony,
|
| 63 |
-
populations,
|
| 64 |
-
population_size,
|
| 65 |
-
ncycles_per_iteration,
|
| 66 |
-
elementwise_loss,
|
| 67 |
-
adaptive_parsimony_scaling,
|
| 68 |
-
optimizer_algorithm,
|
| 69 |
-
optimizer_iterations,
|
| 70 |
-
batching,
|
| 71 |
-
batch_size,
|
| 72 |
-
):
|
| 73 |
-
"""Load data, then spawn a process to run the greet function."""
|
| 74 |
-
if file_input is not None:
|
| 75 |
-
# Look at some statistics of the file:
|
| 76 |
-
df = pd.read_csv(file_input)
|
| 77 |
-
if len(df) == 0:
|
| 78 |
-
return (
|
| 79 |
-
empty_df(),
|
| 80 |
-
"The file is empty!",
|
| 81 |
-
)
|
| 82 |
-
if len(df.columns) == 1:
|
| 83 |
-
return (
|
| 84 |
-
empty_df(),
|
| 85 |
-
"The file has only one column!",
|
| 86 |
-
)
|
| 87 |
-
if len(df) > 10_000 and not force_run:
|
| 88 |
-
return (
|
| 89 |
-
empty_df(),
|
| 90 |
-
"You have uploaded a file with more than 10,000 rows. "
|
| 91 |
-
"This will take very long to run. "
|
| 92 |
-
"Please upload a subsample of the data, "
|
| 93 |
-
"or check the box 'Ignore Warnings'.",
|
| 94 |
-
)
|
| 95 |
-
|
| 96 |
-
col_to_fit = df.columns[-1]
|
| 97 |
-
y = np.array(df[col_to_fit])
|
| 98 |
-
X = df.drop([col_to_fit], axis=1)
|
| 99 |
-
else:
|
| 100 |
-
X, y = generate_data(test_equation, num_points, noise_level, data_seed)
|
| 101 |
-
|
| 102 |
-
with tempfile.TemporaryDirectory() as tmpdirname:
|
| 103 |
-
base = Path(tmpdirname)
|
| 104 |
-
equation_file = base / "hall_of_fame.csv"
|
| 105 |
-
equation_file_bkup = base / "hall_of_fame.csv.bkup"
|
| 106 |
-
process = mp.Process(
|
| 107 |
-
target=greet,
|
| 108 |
-
kwargs=dict(
|
| 109 |
-
X=X,
|
| 110 |
-
y=y,
|
| 111 |
-
niterations=niterations,
|
| 112 |
-
maxsize=maxsize,
|
| 113 |
-
binary_operators=binary_operators,
|
| 114 |
-
unary_operators=unary_operators,
|
| 115 |
-
equation_file=equation_file,
|
| 116 |
-
parsimony=parsimony,
|
| 117 |
-
populations=populations,
|
| 118 |
-
population_size=population_size,
|
| 119 |
-
ncycles_per_iteration=ncycles_per_iteration,
|
| 120 |
-
elementwise_loss=elementwise_loss,
|
| 121 |
-
adaptive_parsimony_scaling=adaptive_parsimony_scaling,
|
| 122 |
-
optimizer_algorithm=optimizer_algorithm,
|
| 123 |
-
optimizer_iterations=optimizer_iterations,
|
| 124 |
-
batching=batching,
|
| 125 |
-
batch_size=batch_size,
|
| 126 |
-
),
|
| 127 |
-
)
|
| 128 |
-
process.start()
|
| 129 |
-
last_yield_time = None
|
| 130 |
-
while process.is_alive():
|
| 131 |
-
if equation_file_bkup.exists():
|
| 132 |
-
try:
|
| 133 |
-
# First, copy the file to a the copy file
|
| 134 |
-
equation_file_copy = base / "hall_of_fame_copy.csv"
|
| 135 |
-
os.system(f"cp {equation_file_bkup} {equation_file_copy}")
|
| 136 |
-
equations = pd.read_csv(equation_file_copy)
|
| 137 |
-
# Ensure it is pareto dominated, with more complex expressions
|
| 138 |
-
# having higher loss. Otherwise remove those rows.
|
| 139 |
-
# TODO: Not sure why this occurs; could be the result of a late copy?
|
| 140 |
-
equations.sort_values("Complexity", ascending=True, inplace=True)
|
| 141 |
-
equations.reset_index(inplace=True)
|
| 142 |
-
bad_idx = []
|
| 143 |
-
min_loss = None
|
| 144 |
-
for i in equations.index:
|
| 145 |
-
if min_loss is None or equations.loc[i, "Loss"] < min_loss:
|
| 146 |
-
min_loss = float(equations.loc[i, "Loss"])
|
| 147 |
-
else:
|
| 148 |
-
bad_idx.append(i)
|
| 149 |
-
equations.drop(index=bad_idx, inplace=True)
|
| 150 |
-
|
| 151 |
-
while (
|
| 152 |
-
last_yield_time is not None
|
| 153 |
-
and time.time() - last_yield_time < plot_update_delay
|
| 154 |
-
):
|
| 155 |
-
time.sleep(0.1)
|
| 156 |
-
|
| 157 |
-
yield equations[["Complexity", "Loss", "Equation"]]
|
| 158 |
-
|
| 159 |
-
last_yield_time = time.time()
|
| 160 |
-
except pd.errors.EmptyDataError:
|
| 161 |
-
pass
|
| 162 |
-
|
| 163 |
-
process.join()
|
| 164 |
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
X,
|
| 169 |
-
y,
|
| 170 |
-
**pysr_kwargs,
|
| 171 |
-
):
|
| 172 |
-
import pysr
|
| 173 |
-
|
| 174 |
-
model = pysr.PySRRegressor(
|
| 175 |
-
progress=False,
|
| 176 |
-
timeout_in_seconds=1000,
|
| 177 |
-
**pysr_kwargs,
|
| 178 |
-
)
|
| 179 |
-
model.fit(X, y)
|
| 180 |
-
|
| 181 |
-
return 0
|
| 182 |
|
| 183 |
|
| 184 |
def _data_layout():
|
|
@@ -372,7 +196,7 @@ def main():
|
|
| 372 |
blocks["run"] = gr.Button()
|
| 373 |
|
| 374 |
blocks["run"].click(
|
| 375 |
-
|
| 376 |
inputs=[
|
| 377 |
blocks[k]
|
| 378 |
for k in [
|
|
@@ -423,75 +247,5 @@ def main():
|
|
| 423 |
demo.launch(debug=True)
|
| 424 |
|
| 425 |
|
| 426 |
-
def replot_pareto(df, maxsize):
|
| 427 |
-
fig, ax = plt.subplots(figsize=(6, 6), dpi=100)
|
| 428 |
-
|
| 429 |
-
if len(df) == 0 or "Equation" not in df.columns:
|
| 430 |
-
return fig
|
| 431 |
-
|
| 432 |
-
# Plotting the data
|
| 433 |
-
ax.loglog(
|
| 434 |
-
df["Complexity"],
|
| 435 |
-
df["Loss"],
|
| 436 |
-
marker="o",
|
| 437 |
-
linestyle="-",
|
| 438 |
-
color="#333f48",
|
| 439 |
-
linewidth=1.5,
|
| 440 |
-
markersize=6,
|
| 441 |
-
)
|
| 442 |
-
|
| 443 |
-
# Set the axis limits
|
| 444 |
-
ax.set_xlim(0.5, maxsize + 1)
|
| 445 |
-
ytop = 2 ** (np.ceil(np.log2(df["Loss"].max())))
|
| 446 |
-
ybottom = 2 ** (np.floor(np.log2(df["Loss"].min() + 1e-20)))
|
| 447 |
-
ax.set_ylim(ybottom, ytop)
|
| 448 |
-
|
| 449 |
-
ax.grid(True, which="both", ls="--", linewidth=0.5, color="gray", alpha=0.5)
|
| 450 |
-
ax.spines["top"].set_visible(False)
|
| 451 |
-
ax.spines["right"].set_visible(False)
|
| 452 |
-
|
| 453 |
-
# Range-frame the plot
|
| 454 |
-
for direction in ["bottom", "left"]:
|
| 455 |
-
ax.spines[direction].set_position(("outward", 10))
|
| 456 |
-
|
| 457 |
-
# Delete far ticks
|
| 458 |
-
ax.tick_params(axis="both", which="major", labelsize=10, direction="out", length=5)
|
| 459 |
-
ax.tick_params(axis="both", which="minor", labelsize=8, direction="out", length=3)
|
| 460 |
-
|
| 461 |
-
ax.set_xlabel("Complexity")
|
| 462 |
-
ax.set_ylabel("Loss")
|
| 463 |
-
fig.tight_layout(pad=2)
|
| 464 |
-
|
| 465 |
-
return fig
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
def replot(test_equation, num_points, noise_level, data_seed):
|
| 469 |
-
X, y = generate_data(test_equation, num_points, noise_level, data_seed)
|
| 470 |
-
x = X["x"]
|
| 471 |
-
|
| 472 |
-
plt.rcParams["font.family"] = "IBM Plex Mono"
|
| 473 |
-
fig, ax = plt.subplots(figsize=(6, 6), dpi=100)
|
| 474 |
-
|
| 475 |
-
ax.scatter(x, y, alpha=0.7, edgecolors="w", s=50)
|
| 476 |
-
|
| 477 |
-
ax.grid(True, which="both", ls="--", linewidth=0.5, color="gray", alpha=0.5)
|
| 478 |
-
ax.spines["top"].set_visible(False)
|
| 479 |
-
ax.spines["right"].set_visible(False)
|
| 480 |
-
|
| 481 |
-
# Range-frame the plot
|
| 482 |
-
for direction in ["bottom", "left"]:
|
| 483 |
-
ax.spines[direction].set_position(("outward", 10))
|
| 484 |
-
|
| 485 |
-
# Delete far ticks
|
| 486 |
-
ax.tick_params(axis="both", which="major", labelsize=10, direction="out", length=5)
|
| 487 |
-
ax.tick_params(axis="both", which="minor", labelsize=8, direction="out", length=3)
|
| 488 |
-
|
| 489 |
-
ax.set_xlabel("x")
|
| 490 |
-
ax.set_ylabel("y")
|
| 491 |
-
fig.tight_layout(pad=2)
|
| 492 |
-
|
| 493 |
-
return fig
|
| 494 |
-
|
| 495 |
-
|
| 496 |
if __name__ == "__main__":
|
| 497 |
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
from .data import test_equations
|
| 4 |
+
from .plots import replot, replot_pareto
|
| 5 |
+
from .processing import process
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
def _data_layout():
|
|
|
|
| 196 |
blocks["run"] = gr.Button()
|
| 197 |
|
| 198 |
blocks["run"].click(
|
| 199 |
+
process,
|
| 200 |
inputs=[
|
| 201 |
blocks[k]
|
| 202 |
for k in [
|
|
|
|
| 247 |
demo.launch(debug=True)
|
| 248 |
|
| 249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
if __name__ == "__main__":
|
| 251 |
main()
|
gui/data.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
|
| 4 |
+
test_equations = ["sin(2*x)/x + 0.1*x"]
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def generate_data(s: str, num_points: int, noise_level: float, data_seed: int):
|
| 8 |
+
rstate = np.random.RandomState(data_seed)
|
| 9 |
+
x = rstate.uniform(-10, 10, num_points)
|
| 10 |
+
for k, v in {
|
| 11 |
+
"sin": "np.sin",
|
| 12 |
+
"cos": "np.cos",
|
| 13 |
+
"exp": "np.exp",
|
| 14 |
+
"log": "np.log",
|
| 15 |
+
"tan": "np.tan",
|
| 16 |
+
"^": "**",
|
| 17 |
+
}.items():
|
| 18 |
+
s = s.replace(k, v)
|
| 19 |
+
y = eval(s)
|
| 20 |
+
noise = rstate.normal(0, noise_level, y.shape)
|
| 21 |
+
y_noisy = y + noise
|
| 22 |
+
return pd.DataFrame({"x": x}), y_noisy
|
gui/plots.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from matplotlib import pyplot as plt
|
| 4 |
+
|
| 5 |
+
plt.ioff()
|
| 6 |
+
plt.rcParams["font.family"] = [
|
| 7 |
+
"IBM Plex Mono",
|
| 8 |
+
# Fallback fonts:
|
| 9 |
+
"DejaVu Sans Mono",
|
| 10 |
+
"Courier New",
|
| 11 |
+
"monospace",
|
| 12 |
+
]
|
| 13 |
+
|
| 14 |
+
from .data import generate_data
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def replot_pareto(df: pd.DataFrame, maxsize: int):
|
| 18 |
+
fig, ax = plt.subplots(figsize=(6, 6), dpi=100)
|
| 19 |
+
|
| 20 |
+
if len(df) == 0 or "Equation" not in df.columns:
|
| 21 |
+
return fig
|
| 22 |
+
|
| 23 |
+
# Plotting the data
|
| 24 |
+
ax.loglog(
|
| 25 |
+
df["Complexity"],
|
| 26 |
+
df["Loss"],
|
| 27 |
+
marker="o",
|
| 28 |
+
linestyle="-",
|
| 29 |
+
color="#333f48",
|
| 30 |
+
linewidth=1.5,
|
| 31 |
+
markersize=6,
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
# Set the axis limits
|
| 35 |
+
ax.set_xlim(0.5, maxsize + 1)
|
| 36 |
+
ytop = 2 ** (np.ceil(np.log2(df["Loss"].max())))
|
| 37 |
+
ybottom = 2 ** (np.floor(np.log2(df["Loss"].min() + 1e-20)))
|
| 38 |
+
ax.set_ylim(ybottom, ytop)
|
| 39 |
+
|
| 40 |
+
ax.grid(True, which="both", ls="--", linewidth=0.5, color="gray", alpha=0.5)
|
| 41 |
+
ax.spines["top"].set_visible(False)
|
| 42 |
+
ax.spines["right"].set_visible(False)
|
| 43 |
+
|
| 44 |
+
# Range-frame the plot
|
| 45 |
+
for direction in ["bottom", "left"]:
|
| 46 |
+
ax.spines[direction].set_position(("outward", 10))
|
| 47 |
+
|
| 48 |
+
# Delete far ticks
|
| 49 |
+
ax.tick_params(axis="both", which="major", labelsize=10, direction="out", length=5)
|
| 50 |
+
ax.tick_params(axis="both", which="minor", labelsize=8, direction="out", length=3)
|
| 51 |
+
|
| 52 |
+
ax.set_xlabel("Complexity")
|
| 53 |
+
ax.set_ylabel("Loss")
|
| 54 |
+
fig.tight_layout(pad=2)
|
| 55 |
+
|
| 56 |
+
return fig
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def replot(test_equation, num_points, noise_level, data_seed):
|
| 60 |
+
X, y = generate_data(test_equation, num_points, noise_level, data_seed)
|
| 61 |
+
x = X["x"]
|
| 62 |
+
|
| 63 |
+
plt.rcParams["font.family"] = "IBM Plex Mono"
|
| 64 |
+
fig, ax = plt.subplots(figsize=(6, 6), dpi=100)
|
| 65 |
+
|
| 66 |
+
ax.scatter(x, y, alpha=0.7, edgecolors="w", s=50)
|
| 67 |
+
|
| 68 |
+
ax.grid(True, which="both", ls="--", linewidth=0.5, color="gray", alpha=0.5)
|
| 69 |
+
ax.spines["top"].set_visible(False)
|
| 70 |
+
ax.spines["right"].set_visible(False)
|
| 71 |
+
|
| 72 |
+
# Range-frame the plot
|
| 73 |
+
for direction in ["bottom", "left"]:
|
| 74 |
+
ax.spines[direction].set_position(("outward", 10))
|
| 75 |
+
|
| 76 |
+
# Delete far ticks
|
| 77 |
+
ax.tick_params(axis="both", which="major", labelsize=10, direction="out", length=5)
|
| 78 |
+
ax.tick_params(axis="both", which="minor", labelsize=8, direction="out", length=3)
|
| 79 |
+
|
| 80 |
+
ax.set_xlabel("x")
|
| 81 |
+
ax.set_ylabel("y")
|
| 82 |
+
fig.tight_layout(pad=2)
|
| 83 |
+
|
| 84 |
+
return fig
|
gui/processing.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import multiprocessing as mp
|
| 2 |
+
import os
|
| 3 |
+
import tempfile
|
| 4 |
+
import time
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import pandas as pd
|
| 9 |
+
|
| 10 |
+
from .data import generate_data
|
| 11 |
+
|
| 12 |
+
EMPTY_DF = lambda: pd.DataFrame(
|
| 13 |
+
{
|
| 14 |
+
"Equation": [],
|
| 15 |
+
"Loss": [],
|
| 16 |
+
"Complexity": [],
|
| 17 |
+
}
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def process(
|
| 22 |
+
file_input,
|
| 23 |
+
force_run,
|
| 24 |
+
test_equation,
|
| 25 |
+
num_points,
|
| 26 |
+
noise_level,
|
| 27 |
+
data_seed,
|
| 28 |
+
niterations,
|
| 29 |
+
maxsize,
|
| 30 |
+
binary_operators,
|
| 31 |
+
unary_operators,
|
| 32 |
+
plot_update_delay,
|
| 33 |
+
parsimony,
|
| 34 |
+
populations,
|
| 35 |
+
population_size,
|
| 36 |
+
ncycles_per_iteration,
|
| 37 |
+
elementwise_loss,
|
| 38 |
+
adaptive_parsimony_scaling,
|
| 39 |
+
optimizer_algorithm,
|
| 40 |
+
optimizer_iterations,
|
| 41 |
+
batching,
|
| 42 |
+
batch_size,
|
| 43 |
+
):
|
| 44 |
+
"""Load data, then spawn a process to run the greet function."""
|
| 45 |
+
if file_input is not None:
|
| 46 |
+
# Look at some statistics of the file:
|
| 47 |
+
df = pd.read_csv(file_input)
|
| 48 |
+
if len(df) == 0:
|
| 49 |
+
return (
|
| 50 |
+
EMPTY_DF(),
|
| 51 |
+
"The file is empty!",
|
| 52 |
+
)
|
| 53 |
+
if len(df.columns) == 1:
|
| 54 |
+
return (
|
| 55 |
+
EMPTY_DF(),
|
| 56 |
+
"The file has only one column!",
|
| 57 |
+
)
|
| 58 |
+
if len(df) > 10_000 and not force_run:
|
| 59 |
+
return (
|
| 60 |
+
EMPTY_DF(),
|
| 61 |
+
"You have uploaded a file with more than 10,000 rows. "
|
| 62 |
+
"This will take very long to run. "
|
| 63 |
+
"Please upload a subsample of the data, "
|
| 64 |
+
"or check the box 'Ignore Warnings'.",
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
col_to_fit = df.columns[-1]
|
| 68 |
+
y = np.array(df[col_to_fit])
|
| 69 |
+
X = df.drop([col_to_fit], axis=1)
|
| 70 |
+
else:
|
| 71 |
+
X, y = generate_data(test_equation, num_points, noise_level, data_seed)
|
| 72 |
+
|
| 73 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
| 74 |
+
base = Path(tmpdirname)
|
| 75 |
+
equation_file = base / "hall_of_fame.csv"
|
| 76 |
+
equation_file_bkup = base / "hall_of_fame.csv.bkup"
|
| 77 |
+
process = mp.Process(
|
| 78 |
+
target=pysr_fit,
|
| 79 |
+
kwargs=dict(
|
| 80 |
+
X=X,
|
| 81 |
+
y=y,
|
| 82 |
+
niterations=niterations,
|
| 83 |
+
maxsize=maxsize,
|
| 84 |
+
binary_operators=binary_operators,
|
| 85 |
+
unary_operators=unary_operators,
|
| 86 |
+
equation_file=equation_file,
|
| 87 |
+
parsimony=parsimony,
|
| 88 |
+
populations=populations,
|
| 89 |
+
population_size=population_size,
|
| 90 |
+
ncycles_per_iteration=ncycles_per_iteration,
|
| 91 |
+
elementwise_loss=elementwise_loss,
|
| 92 |
+
adaptive_parsimony_scaling=adaptive_parsimony_scaling,
|
| 93 |
+
optimizer_algorithm=optimizer_algorithm,
|
| 94 |
+
optimizer_iterations=optimizer_iterations,
|
| 95 |
+
batching=batching,
|
| 96 |
+
batch_size=batch_size,
|
| 97 |
+
),
|
| 98 |
+
)
|
| 99 |
+
process.start()
|
| 100 |
+
last_yield_time = None
|
| 101 |
+
while process.is_alive():
|
| 102 |
+
if equation_file_bkup.exists():
|
| 103 |
+
try:
|
| 104 |
+
# First, copy the file to a the copy file
|
| 105 |
+
equation_file_copy = base / "hall_of_fame_copy.csv"
|
| 106 |
+
os.system(f"cp {equation_file_bkup} {equation_file_copy}")
|
| 107 |
+
equations = pd.read_csv(equation_file_copy)
|
| 108 |
+
# Ensure it is pareto dominated, with more complex expressions
|
| 109 |
+
# having higher loss. Otherwise remove those rows.
|
| 110 |
+
# TODO: Not sure why this occurs; could be the result of a late copy?
|
| 111 |
+
equations.sort_values("Complexity", ascending=True, inplace=True)
|
| 112 |
+
equations.reset_index(inplace=True)
|
| 113 |
+
bad_idx = []
|
| 114 |
+
min_loss = None
|
| 115 |
+
for i in equations.index:
|
| 116 |
+
if min_loss is None or equations.loc[i, "Loss"] < min_loss:
|
| 117 |
+
min_loss = float(equations.loc[i, "Loss"])
|
| 118 |
+
else:
|
| 119 |
+
bad_idx.append(i)
|
| 120 |
+
equations.drop(index=bad_idx, inplace=True)
|
| 121 |
+
|
| 122 |
+
while (
|
| 123 |
+
last_yield_time is not None
|
| 124 |
+
and time.time() - last_yield_time < plot_update_delay
|
| 125 |
+
):
|
| 126 |
+
time.sleep(0.1)
|
| 127 |
+
|
| 128 |
+
yield equations[["Complexity", "Loss", "Equation"]]
|
| 129 |
+
|
| 130 |
+
last_yield_time = time.time()
|
| 131 |
+
except pd.errors.EmptyDataError:
|
| 132 |
+
pass
|
| 133 |
+
|
| 134 |
+
process.join()
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def pysr_fit(
|
| 138 |
+
*,
|
| 139 |
+
X,
|
| 140 |
+
y,
|
| 141 |
+
**pysr_kwargs,
|
| 142 |
+
):
|
| 143 |
+
import pysr
|
| 144 |
+
|
| 145 |
+
model = pysr.PySRRegressor(
|
| 146 |
+
progress=False,
|
| 147 |
+
timeout_in_seconds=1000,
|
| 148 |
+
**pysr_kwargs,
|
| 149 |
+
)
|
| 150 |
+
model.fit(X, y)
|