Spaces:
Sleeping
Sleeping
Commit
·
a95ae71
1
Parent(s):
9b8f588
Fix issues with hyperopt code
Browse files- eureqa.py +4 -3
- hyperparamopt.py +63 -32
- operators.jl +4 -3
eureqa.py
CHANGED
|
@@ -49,6 +49,7 @@ def eureqa(X=None, y=None, threads=4,
|
|
| 49 |
timeout=None,
|
| 50 |
equation_file='hall_of_fame.csv',
|
| 51 |
test='simple1',
|
|
|
|
| 52 |
maxsize=20,
|
| 53 |
):
|
| 54 |
"""Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i.
|
|
@@ -111,13 +112,13 @@ def eureqa(X=None, y=None, threads=4,
|
|
| 111 |
if test == 'simple1':
|
| 112 |
eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5"
|
| 113 |
elif test == 'simple2':
|
| 114 |
-
eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**3.5 + 1/np.abs(X[:, 0])"
|
| 115 |
elif test == 'simple3':
|
| 116 |
eval_str = "np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)"
|
| 117 |
elif test == 'simple4':
|
| 118 |
eval_str = "1.0 + 3*X[:, 0]**2 - 0.5*X[:, 0]**3 + 0.1*X[:, 0]**4"
|
| 119 |
elif test == 'simple5':
|
| 120 |
-
eval_str = "(np.exp(X[:, 3]) + 3)/(X[:, 1] + np.cos(X[:, 0]))"
|
| 121 |
|
| 122 |
X = np.random.randn(100, 5)*3
|
| 123 |
y = eval(eval_str)
|
|
@@ -172,7 +173,7 @@ const y = convert(Array{Float32, 1}, """f"{y_str})""""
|
|
| 172 |
'julia -O3',
|
| 173 |
f'--threads {threads}',
|
| 174 |
'-e',
|
| 175 |
-
f'\'include(".hyperparams_{rand_string}.jl"); include(".dataset_{rand_string}.jl"); include("eureqa.jl"); fullRun({niterations:d}, npop={npop:d}, annealing={"true" if annealing else "false"}, ncyclesperiteration={ncyclesperiteration:d}, fractionReplaced={fractionReplaced:f}f0, verbosity=round(Int32,
|
| 176 |
]
|
| 177 |
if timeout is not None:
|
| 178 |
command = [f'timeout {timeout}'] + command
|
|
|
|
| 49 |
timeout=None,
|
| 50 |
equation_file='hall_of_fame.csv',
|
| 51 |
test='simple1',
|
| 52 |
+
verbosity=1e9,
|
| 53 |
maxsize=20,
|
| 54 |
):
|
| 55 |
"""Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i.
|
|
|
|
| 112 |
if test == 'simple1':
|
| 113 |
eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5"
|
| 114 |
elif test == 'simple2':
|
| 115 |
+
eval_str = "np.sign(X[:, 2])*np.abs(X[:, 2])**3.5 + 1/(np.abs(X[:, 0])+1)"
|
| 116 |
elif test == 'simple3':
|
| 117 |
eval_str = "np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)"
|
| 118 |
elif test == 'simple4':
|
| 119 |
eval_str = "1.0 + 3*X[:, 0]**2 - 0.5*X[:, 0]**3 + 0.1*X[:, 0]**4"
|
| 120 |
elif test == 'simple5':
|
| 121 |
+
eval_str = "(np.exp(X[:, 3]) + 3)/(np.abs(X[:, 1]) + np.cos(X[:, 0]) + 1.1)"
|
| 122 |
|
| 123 |
X = np.random.randn(100, 5)*3
|
| 124 |
y = eval(eval_str)
|
|
|
|
| 173 |
'julia -O3',
|
| 174 |
f'--threads {threads}',
|
| 175 |
'-e',
|
| 176 |
+
f'\'include(".hyperparams_{rand_string}.jl"); include(".dataset_{rand_string}.jl"); include("eureqa.jl"); fullRun({niterations:d}, npop={npop:d}, annealing={"true" if annealing else "false"}, ncyclesperiteration={ncyclesperiteration:d}, fractionReplaced={fractionReplaced:f}f0, verbosity=round(Int32, {verbosity:f}), topn={topn:d})\'',
|
| 177 |
]
|
| 178 |
if timeout is not None:
|
| 179 |
command = [f'timeout {timeout}'] + command
|
hyperparamopt.py
CHANGED
|
@@ -5,6 +5,19 @@ import pickle as pkl
|
|
| 5 |
import hyperopt
|
| 6 |
from hyperopt import hp, fmin, tpe, Trials
|
| 7 |
import eureqa
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
#Change the following code to your file
|
|
@@ -21,45 +34,68 @@ def run_trial(args):
|
|
| 21 |
"""
|
| 22 |
|
| 23 |
print("Running on", args)
|
| 24 |
-
for key in 'niterations npop
|
| 25 |
args[key] = int(args[key])
|
| 26 |
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
print("Bad parameters")
|
| 29 |
return {'status': 'ok', 'loss': np.inf}
|
| 30 |
|
| 31 |
-
def handler(signum, frame):
|
| 32 |
-
print("Took too long. Skipping.")
|
| 33 |
-
raise ValueError("Takes too long")
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
| 37 |
equation_file = f'.hall_of_fame_{np.random.rand():f}.csv'
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
try:
|
| 40 |
trials = []
|
| 41 |
-
for i in range(1,
|
| 42 |
-
|
| 43 |
for j in range(ntrials):
|
|
|
|
| 44 |
trial = eureqa.eureqa(
|
| 45 |
test=f"simple{i}",
|
| 46 |
-
threads=
|
| 47 |
binary_operators=["plus", "mult", "pow", "div"],
|
| 48 |
-
unary_operators=["cos", "exp", "sin", "
|
| 49 |
equation_file=equation_file,
|
| 50 |
timeout=maxTime,
|
|
|
|
|
|
|
| 51 |
**args)
|
| 52 |
if len(trial) == 0: raise ValueError
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
| 55 |
except ValueError:
|
|
|
|
| 56 |
return {
|
| 57 |
'status': 'ok', # or 'fail' if nan loss
|
| 58 |
'loss': np.inf
|
| 59 |
}
|
| 60 |
-
|
| 61 |
loss = np.average(trials)
|
| 62 |
-
print(
|
| 63 |
|
| 64 |
return {
|
| 65 |
'status': 'ok', # or 'fail' if nan loss
|
|
@@ -68,22 +104,17 @@ def run_trial(args):
|
|
| 68 |
|
| 69 |
|
| 70 |
space = {
|
| 71 |
-
'niterations': hp.qlognormal('niterations', np.log(10), 0
|
| 72 |
-
'npop': hp.qlognormal('npop', np.log(100), 0
|
| 73 |
-
'
|
| 74 |
-
'
|
| 75 |
-
'
|
| 76 |
-
'
|
| 77 |
-
'
|
| 78 |
-
'
|
| 79 |
-
'
|
| 80 |
-
'
|
| 81 |
-
'
|
| 82 |
-
'weightAddNode': hp.lognormal('weightAddNode', np.log(0.5), 0.5),
|
| 83 |
-
'weightDeleteNode': hp.lognormal('weightDeleteNode', np.log(0.5), 0.5),
|
| 84 |
-
'weightSimplify': hp.lognormal('weightSimplify', np.log(0.05), 0.5),
|
| 85 |
-
'weightRandomize': hp.lognormal('weightRandomize', np.log(0.25), 0.5),
|
| 86 |
-
'weightDoNothing': hp.lognormal('weightDoNothing', np.log(1.0), 0.5),
|
| 87 |
}
|
| 88 |
|
| 89 |
################################################################################
|
|
@@ -165,7 +196,7 @@ while True:
|
|
| 165 |
|
| 166 |
# Merge with empty trials dataset:
|
| 167 |
save_trials = merge_trials(hyperopt_trial, trials.trials[-n:])
|
| 168 |
-
new_fname = TRIALS_FOLDER + '/' + str(np.random.randint(0, sys.maxsize)) + '.pkl'
|
| 169 |
pkl.dump({'trials': save_trials, 'n': n}, open(new_fname, 'wb'))
|
| 170 |
loaded_fnames.append(new_fname)
|
| 171 |
|
|
|
|
| 5 |
import hyperopt
|
| 6 |
from hyperopt import hp, fmin, tpe, Trials
|
| 7 |
import eureqa
|
| 8 |
+
import time
|
| 9 |
+
|
| 10 |
+
import contextlib
|
| 11 |
+
import numpy as np
|
| 12 |
+
|
| 13 |
+
@contextlib.contextmanager
|
| 14 |
+
def temp_seed(seed):
|
| 15 |
+
state = np.random.get_state()
|
| 16 |
+
np.random.seed(seed)
|
| 17 |
+
try:
|
| 18 |
+
yield
|
| 19 |
+
finally:
|
| 20 |
+
np.random.set_state(state)
|
| 21 |
|
| 22 |
|
| 23 |
#Change the following code to your file
|
|
|
|
| 34 |
"""
|
| 35 |
|
| 36 |
print("Running on", args)
|
| 37 |
+
for key in 'niterations npop'.split(' '):
|
| 38 |
args[key] = int(args[key])
|
| 39 |
|
| 40 |
+
total_steps = 10*100*5000
|
| 41 |
+
niterations = args['niterations']
|
| 42 |
+
npop = args['npop']
|
| 43 |
+
args['ncyclesperiteration'] = int(total_steps / (niterations * npop))
|
| 44 |
+
args['topn'] = 10
|
| 45 |
+
args['parsimony'] = 1e-3
|
| 46 |
+
args['annealing'] = True
|
| 47 |
+
|
| 48 |
+
if args['npop'] < 20 or args['ncyclesperiteration'] < 3:
|
| 49 |
print("Bad parameters")
|
| 50 |
return {'status': 'ok', 'loss': np.inf}
|
| 51 |
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
args['weightDoNothing'] = 1.0
|
| 54 |
+
|
| 55 |
+
maxTime = 2*60
|
| 56 |
+
ntrials = 2
|
| 57 |
equation_file = f'.hall_of_fame_{np.random.rand():f}.csv'
|
| 58 |
|
| 59 |
+
with temp_seed(0):
|
| 60 |
+
X = np.random.randn(100, 5)*3
|
| 61 |
+
|
| 62 |
+
eval_str = ["np.sign(X[:, 2])*np.abs(X[:, 2])**2.5 + 5*np.cos(X[:, 3]) - 5",
|
| 63 |
+
"np.sign(X[:, 2])*np.abs(X[:, 2])**3.5 + 1/(np.abs(X[:, 0])+1)",
|
| 64 |
+
"np.exp(X[:, 0]/2) + 12.0 + np.log(np.abs(X[:, 0])*10 + 1)",
|
| 65 |
+
"1.0 + 3*X[:, 0]**2 - 0.5*X[:, 0]**3 + 0.1*X[:, 0]**4",
|
| 66 |
+
"(np.exp(X[:, 3]) + 3)/(np.abs(X[:, 1]) + np.cos(X[:, 0]) + 1.1)"]
|
| 67 |
+
|
| 68 |
+
print(f"Starting", str(args))
|
| 69 |
try:
|
| 70 |
trials = []
|
| 71 |
+
for i in range(1, 6):
|
| 72 |
+
print(f"Starting test {i}")
|
| 73 |
for j in range(ntrials):
|
| 74 |
+
print(f"Starting trial {j}")
|
| 75 |
trial = eureqa.eureqa(
|
| 76 |
test=f"simple{i}",
|
| 77 |
+
threads=8,
|
| 78 |
binary_operators=["plus", "mult", "pow", "div"],
|
| 79 |
+
unary_operators=["cos", "exp", "sin", "loga", "abs"],
|
| 80 |
equation_file=equation_file,
|
| 81 |
timeout=maxTime,
|
| 82 |
+
maxsize=25,
|
| 83 |
+
verbosity=0,
|
| 84 |
**args)
|
| 85 |
if len(trial) == 0: raise ValueError
|
| 86 |
+
trials.append(
|
| 87 |
+
np.min(trial['MSE'])**0.5 / np.std(eval(eval_str[i-1]))
|
| 88 |
+
)
|
| 89 |
+
print(f"Test {i} trial {j} with", str(args), f"got {trials[-1]}")
|
| 90 |
+
|
| 91 |
except ValueError:
|
| 92 |
+
print(f"Broken", str(args))
|
| 93 |
return {
|
| 94 |
'status': 'ok', # or 'fail' if nan loss
|
| 95 |
'loss': np.inf
|
| 96 |
}
|
|
|
|
| 97 |
loss = np.average(trials)
|
| 98 |
+
print(f"Finished with {loss}", str(args))
|
| 99 |
|
| 100 |
return {
|
| 101 |
'status': 'ok', # or 'fail' if nan loss
|
|
|
|
| 104 |
|
| 105 |
|
| 106 |
space = {
|
| 107 |
+
'niterations': hp.qlognormal('niterations', np.log(10), 1.0, 1),
|
| 108 |
+
'npop': hp.qlognormal('npop', np.log(100), 1.0, 1),
|
| 109 |
+
'alpha': hp.lognormal('alpha', np.log(10.0), 1.0),
|
| 110 |
+
'fractionReplacedHof': hp.lognormal('fractionReplacedHof', np.log(0.1), 1.0),
|
| 111 |
+
'fractionReplaced': hp.lognormal('fractionReplaced', np.log(0.1), 1.0),
|
| 112 |
+
'weightMutateConstant': hp.lognormal('weightMutateConstant', np.log(4.0), 1.0),
|
| 113 |
+
'weightMutateOperator': hp.lognormal('weightMutateOperator', np.log(0.5), 1.0),
|
| 114 |
+
'weightAddNode': hp.lognormal('weightAddNode', np.log(0.5), 1.0),
|
| 115 |
+
'weightDeleteNode': hp.lognormal('weightDeleteNode', np.log(0.5), 1.0),
|
| 116 |
+
'weightSimplify': hp.lognormal('weightSimplify', np.log(0.05), 1.0),
|
| 117 |
+
'weightRandomize': hp.lognormal('weightRandomize', np.log(0.25), 1.0),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
}
|
| 119 |
|
| 120 |
################################################################################
|
|
|
|
| 196 |
|
| 197 |
# Merge with empty trials dataset:
|
| 198 |
save_trials = merge_trials(hyperopt_trial, trials.trials[-n:])
|
| 199 |
+
new_fname = TRIALS_FOLDER + '/' + str(np.random.randint(0, sys.maxsize)) + str(time.time()) + '.pkl'
|
| 200 |
pkl.dump({'trials': save_trials, 'n': n}, open(new_fname, 'wb'))
|
| 201 |
loaded_fnames.append(new_fname)
|
| 202 |
|
operators.jl
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
# Define allowed operators. Any julia operator can also be used.
|
| 2 |
plus(x::Float32, y::Float32)::Float32 = x+y
|
| 3 |
-
mult(x::Float32, y::Float32)::Float32 = x*y
|
| 4 |
-
pow(x::Float32, y::Float32)::Float32 = sign(x)*abs(x)^y
|
| 5 |
-
div(x::Float32, y::Float32)::Float32 = x/y
|
|
|
|
|
|
| 1 |
# Define allowed operators. Any julia operator can also be used.
|
| 2 |
plus(x::Float32, y::Float32)::Float32 = x+y
|
| 3 |
+
mult(x::Float32, y::Float32)::Float32 = x*y
|
| 4 |
+
pow(x::Float32, y::Float32)::Float32 = sign(x)*abs(x)^y
|
| 5 |
+
div(x::Float32, y::Float32)::Float32 = x/y
|
| 6 |
+
loga(x::Float32)::Float32 = log(abs(x) + 1)
|