Spaces:
Running
Running
Only run PySR in another process
Browse files- gui/app.py +58 -43
gui/app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
-
import
|
| 5 |
import tempfile
|
| 6 |
from typing import Optional
|
| 7 |
|
|
@@ -35,26 +35,22 @@ def generate_data(s: str, num_points: int, noise_level: float):
|
|
| 35 |
return pd.DataFrame({"x": x}), y_noisy
|
| 36 |
|
| 37 |
|
| 38 |
-
def
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
):
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
return (
|
| 53 |
-
empty_df,
|
| 54 |
-
"Please select at least one operator!",
|
| 55 |
-
)
|
| 56 |
# Look at some statistics of the file:
|
| 57 |
-
df = pd.read_csv(
|
| 58 |
if len(df) == 0:
|
| 59 |
return (
|
| 60 |
empty_df,
|
|
@@ -78,10 +74,44 @@ def greet(
|
|
| 78 |
y = np.array(df[col_to_fit])
|
| 79 |
X = df.drop([col_to_fit], axis=1)
|
| 80 |
else:
|
|
|
|
| 81 |
X, y = generate_data(test_equation, num_points, noise_level)
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
model = pysr.PySRRegressor(
|
| 84 |
-
|
| 85 |
maxsize=maxsize,
|
| 86 |
niterations=niterations,
|
| 87 |
binary_operators=binary_operators,
|
|
@@ -94,25 +124,11 @@ def greet(
|
|
| 94 |
)
|
| 95 |
model.fit(X, y)
|
| 96 |
|
| 97 |
-
df = model.equations_[["
|
| 98 |
# Convert all columns to string type:
|
| 99 |
-
|
| 100 |
-
msg = (
|
| 101 |
-
"Success!\n"
|
| 102 |
-
f"You may run the model locally (faster) with "
|
| 103 |
-
f"the following parameters:"
|
| 104 |
-
+ f"""
|
| 105 |
-
model = PySRRegressor(
|
| 106 |
-
niterations={niterations},
|
| 107 |
-
binary_operators={str(binary_operators)},
|
| 108 |
-
unary_operators={str(unary_operators)},
|
| 109 |
-
maxsize={maxsize},
|
| 110 |
-
)
|
| 111 |
-
model.fit(X, y)"""
|
| 112 |
-
)
|
| 113 |
|
| 114 |
-
|
| 115 |
-
return df, msg
|
| 116 |
|
| 117 |
|
| 118 |
def _data_layout():
|
|
@@ -218,18 +234,18 @@ def main():
|
|
| 218 |
|
| 219 |
with gr.Column():
|
| 220 |
blocks["df"] = gr.Dataframe(
|
| 221 |
-
headers=["
|
| 222 |
-
datatype=["
|
| 223 |
)
|
| 224 |
blocks["run"] = gr.Button()
|
| 225 |
-
blocks["error_log"] = gr.Textbox(label="Error Log")
|
| 226 |
|
| 227 |
blocks["run"].click(
|
| 228 |
-
|
| 229 |
inputs=[
|
| 230 |
blocks[k]
|
| 231 |
for k in [
|
| 232 |
"file_input",
|
|
|
|
| 233 |
"test_equation",
|
| 234 |
"num_points",
|
| 235 |
"noise_level",
|
|
@@ -238,10 +254,9 @@ def main():
|
|
| 238 |
"binary_operators",
|
| 239 |
"unary_operators",
|
| 240 |
"seed",
|
| 241 |
-
"force_run",
|
| 242 |
]
|
| 243 |
],
|
| 244 |
-
outputs=[blocks["df"]
|
| 245 |
)
|
| 246 |
|
| 247 |
# Any update to the equation choice will trigger a replot:
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
+
import multiprocessing as mp
|
| 5 |
import tempfile
|
| 6 |
from typing import Optional
|
| 7 |
|
|
|
|
| 35 |
return pd.DataFrame({"x": x}), y_noisy
|
| 36 |
|
| 37 |
|
| 38 |
+
def _greet_dispatch(
|
| 39 |
+
file_input,
|
| 40 |
+
force_run,
|
| 41 |
+
test_equation,
|
| 42 |
+
num_points,
|
| 43 |
+
noise_level,
|
| 44 |
+
niterations,
|
| 45 |
+
maxsize,
|
| 46 |
+
binary_operators,
|
| 47 |
+
unary_operators,
|
| 48 |
+
seed,
|
| 49 |
):
|
| 50 |
+
"""Load data, then spawn a process to run the greet function."""
|
| 51 |
+
if file_input is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
# Look at some statistics of the file:
|
| 53 |
+
df = pd.read_csv(file_input)
|
| 54 |
if len(df) == 0:
|
| 55 |
return (
|
| 56 |
empty_df,
|
|
|
|
| 74 |
y = np.array(df[col_to_fit])
|
| 75 |
X = df.drop([col_to_fit], axis=1)
|
| 76 |
else:
|
| 77 |
+
# X, y = generate_data(block["test_equation"], block["num_points"], block["noise_level"])
|
| 78 |
X, y = generate_data(test_equation, num_points, noise_level)
|
| 79 |
|
| 80 |
+
queue = mp.Queue()
|
| 81 |
+
process = mp.Process(
|
| 82 |
+
target=greet,
|
| 83 |
+
kwargs=dict(
|
| 84 |
+
X=X,
|
| 85 |
+
y=y,
|
| 86 |
+
queue=queue,
|
| 87 |
+
niterations=niterations,
|
| 88 |
+
maxsize=maxsize,
|
| 89 |
+
binary_operators=binary_operators,
|
| 90 |
+
unary_operators=unary_operators,
|
| 91 |
+
seed=seed,
|
| 92 |
+
),
|
| 93 |
+
)
|
| 94 |
+
process.start()
|
| 95 |
+
output = queue.get()
|
| 96 |
+
process.join()
|
| 97 |
+
return output
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def greet(
|
| 101 |
+
*,
|
| 102 |
+
queue: mp.Queue,
|
| 103 |
+
X,
|
| 104 |
+
y,
|
| 105 |
+
niterations: int,
|
| 106 |
+
maxsize: int,
|
| 107 |
+
binary_operators: list,
|
| 108 |
+
unary_operators: list,
|
| 109 |
+
seed: int,
|
| 110 |
+
):
|
| 111 |
+
import pysr
|
| 112 |
+
|
| 113 |
model = pysr.PySRRegressor(
|
| 114 |
+
progress=False,
|
| 115 |
maxsize=maxsize,
|
| 116 |
niterations=niterations,
|
| 117 |
binary_operators=binary_operators,
|
|
|
|
| 124 |
)
|
| 125 |
model.fit(X, y)
|
| 126 |
|
| 127 |
+
df = model.equations_[["complexity", "loss", "equation"]]
|
| 128 |
# Convert all columns to string type:
|
| 129 |
+
queue.put(df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
+
return 0
|
|
|
|
| 132 |
|
| 133 |
|
| 134 |
def _data_layout():
|
|
|
|
| 234 |
|
| 235 |
with gr.Column():
|
| 236 |
blocks["df"] = gr.Dataframe(
|
| 237 |
+
headers=["complexity", "loss", "equation"],
|
| 238 |
+
datatype=["number", "number", "str"],
|
| 239 |
)
|
| 240 |
blocks["run"] = gr.Button()
|
|
|
|
| 241 |
|
| 242 |
blocks["run"].click(
|
| 243 |
+
_greet_dispatch,
|
| 244 |
inputs=[
|
| 245 |
blocks[k]
|
| 246 |
for k in [
|
| 247 |
"file_input",
|
| 248 |
+
"force_run",
|
| 249 |
"test_equation",
|
| 250 |
"num_points",
|
| 251 |
"noise_level",
|
|
|
|
| 254 |
"binary_operators",
|
| 255 |
"unary_operators",
|
| 256 |
"seed",
|
|
|
|
| 257 |
]
|
| 258 |
],
|
| 259 |
+
outputs=[blocks["df"]],
|
| 260 |
)
|
| 261 |
|
| 262 |
# Any update to the equation choice will trigger a replot:
|