Spaces:
Running
Running
Commit
·
fb950bb
1
Parent(s):
68b3673
Refactor lazy loading of torch and jax
Browse files- pysr/__init__.py +2 -0
- pysr/export_jax.py +28 -3
- pysr/export_torch.py +176 -152
- test/test_jax.py +1 -1
pysr/__init__.py
CHANGED
|
@@ -1,2 +1,4 @@
|
|
| 1 |
from .sr import pysr, get_hof, best, best_tex, best_callable, best_row
|
| 2 |
from .feynman_problems import Problem, FeynmanProblem
|
|
|
|
|
|
|
|
|
| 1 |
from .sr import pysr, get_hof, best, best_tex, best_callable, best_row
|
| 2 |
from .feynman_problems import Problem, FeynmanProblem
|
| 3 |
+
from .export_jax import sympy2jax
|
| 4 |
+
from .export_torch import sympy2torch
|
pysr/export_jax.py
CHANGED
|
@@ -2,9 +2,6 @@ import functools as ft
|
|
| 2 |
import sympy
|
| 3 |
import string
|
| 4 |
import random
|
| 5 |
-
import jax
|
| 6 |
-
from jax import numpy as jnp
|
| 7 |
-
from jax.scipy import special as jsp
|
| 8 |
|
| 9 |
# Special since need to reduce arguments.
|
| 10 |
MUL = 0
|
|
@@ -53,6 +50,7 @@ _jnp_func_lookup = {
|
|
| 53 |
sympy.Mod: "jnp.mod",
|
| 54 |
}
|
| 55 |
|
|
|
|
| 56 |
def sympy2jaxtext(expr, parameters, symbols_in):
|
| 57 |
if issubclass(expr.func, sympy.Float):
|
| 58 |
parameters.append(float(expr))
|
|
@@ -71,6 +69,27 @@ def sympy2jaxtext(expr, parameters, symbols_in):
|
|
| 71 |
else:
|
| 72 |
return f'{_func}({", ".join(args)})'
|
| 73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
def sympy2jax(expression, symbols_in):
|
| 75 |
"""Returns a function f and its parameters;
|
| 76 |
the function takes an input matrix, and a list of arguments:
|
|
@@ -142,6 +161,12 @@ def sympy2jax(expression, symbols_in):
|
|
| 142 |
# 3.5427954 , -2.7479894 ], dtype=float32)
|
| 143 |
```
|
| 144 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
parameters = []
|
| 146 |
functional_form_text = sympy2jaxtext(expression, parameters, symbols_in)
|
| 147 |
hash_string = 'A_' + str(abs(hash(str(expression) + str(symbols_in))))
|
|
|
|
| 2 |
import sympy
|
| 3 |
import string
|
| 4 |
import random
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# Special since need to reduce arguments.
|
| 7 |
MUL = 0
|
|
|
|
| 50 |
sympy.Mod: "jnp.mod",
|
| 51 |
}
|
| 52 |
|
| 53 |
+
|
| 54 |
def sympy2jaxtext(expr, parameters, symbols_in):
|
| 55 |
if issubclass(expr.func, sympy.Float):
|
| 56 |
parameters.append(float(expr))
|
|
|
|
| 69 |
else:
|
| 70 |
return f'{_func}({", ".join(args)})'
|
| 71 |
|
| 72 |
+
|
| 73 |
+
jax_initialized = False
|
| 74 |
+
jax = None
|
| 75 |
+
jnp = None
|
| 76 |
+
jsp = None
|
| 77 |
+
|
| 78 |
+
def _initialize_jax():
|
| 79 |
+
global jax_initialized
|
| 80 |
+
global jax
|
| 81 |
+
global jnp
|
| 82 |
+
global jsp
|
| 83 |
+
|
| 84 |
+
if not jax_initialized:
|
| 85 |
+
import jax as _jax
|
| 86 |
+
from jax import numpy as _jnp
|
| 87 |
+
from jax.scipy import special as _jsp
|
| 88 |
+
jax = _jax
|
| 89 |
+
jnp = _jnp
|
| 90 |
+
jsp = _jsp
|
| 91 |
+
|
| 92 |
+
|
| 93 |
def sympy2jax(expression, symbols_in):
|
| 94 |
"""Returns a function f and its parameters;
|
| 95 |
the function takes an input matrix, and a list of arguments:
|
|
|
|
| 161 |
# 3.5427954 , -2.7479894 ], dtype=float32)
|
| 162 |
```
|
| 163 |
"""
|
| 164 |
+
_initialize_jax()
|
| 165 |
+
global jax_initialized
|
| 166 |
+
global jax
|
| 167 |
+
global jnp
|
| 168 |
+
global jsp
|
| 169 |
+
|
| 170 |
parameters = []
|
| 171 |
functional_form_text = sympy2jaxtext(expression, parameters, symbols_in)
|
| 172 |
hash_string = 'A_' + str(abs(hash(str(expression) + str(symbols_in))))
|
pysr/export_torch.py
CHANGED
|
@@ -6,165 +6,189 @@
|
|
| 6 |
import collections as co
|
| 7 |
import functools as ft
|
| 8 |
import sympy
|
| 9 |
-
import torch
|
| 10 |
|
| 11 |
def _reduce(fn):
|
| 12 |
def fn_(*args):
|
| 13 |
return ft.reduce(fn, args)
|
| 14 |
return fn_
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
_global_func_lookup = {
|
| 18 |
-
sympy.Mul: _reduce(torch.mul),
|
| 19 |
-
sympy.Add: _reduce(torch.add),
|
| 20 |
-
sympy.div: torch.div,
|
| 21 |
-
sympy.Abs: torch.abs,
|
| 22 |
-
sympy.sign: torch.sign,
|
| 23 |
-
# Note: May raise error for ints.
|
| 24 |
-
sympy.ceiling: torch.ceil,
|
| 25 |
-
sympy.floor: torch.floor,
|
| 26 |
-
sympy.log: torch.log,
|
| 27 |
-
sympy.exp: torch.exp,
|
| 28 |
-
sympy.sqrt: torch.sqrt,
|
| 29 |
-
sympy.cos: torch.cos,
|
| 30 |
-
sympy.acos: torch.acos,
|
| 31 |
-
sympy.sin: torch.sin,
|
| 32 |
-
sympy.asin: torch.asin,
|
| 33 |
-
sympy.tan: torch.tan,
|
| 34 |
-
sympy.atan: torch.atan,
|
| 35 |
-
sympy.atan2: torch.atan2,
|
| 36 |
-
# Note: May give NaN for complex results.
|
| 37 |
-
sympy.cosh: torch.cosh,
|
| 38 |
-
sympy.acosh: torch.acosh,
|
| 39 |
-
sympy.sinh: torch.sinh,
|
| 40 |
-
sympy.asinh: torch.asinh,
|
| 41 |
-
sympy.tanh: torch.tanh,
|
| 42 |
-
sympy.atanh: torch.atanh,
|
| 43 |
-
sympy.Pow: torch.pow,
|
| 44 |
-
sympy.re: torch.real,
|
| 45 |
-
sympy.im: torch.imag,
|
| 46 |
-
sympy.arg: torch.angle,
|
| 47 |
-
# Note: May raise error for ints and complexes
|
| 48 |
-
sympy.erf: torch.erf,
|
| 49 |
-
sympy.loggamma: torch.lgamma,
|
| 50 |
-
sympy.Eq: torch.eq,
|
| 51 |
-
sympy.Ne: torch.ne,
|
| 52 |
-
sympy.StrictGreaterThan: torch.gt,
|
| 53 |
-
sympy.StrictLessThan: torch.lt,
|
| 54 |
-
sympy.LessThan: torch.le,
|
| 55 |
-
sympy.GreaterThan: torch.ge,
|
| 56 |
-
sympy.And: torch.logical_and,
|
| 57 |
-
sympy.Or: torch.logical_or,
|
| 58 |
-
sympy.Not: torch.logical_not,
|
| 59 |
-
sympy.Max: torch.max,
|
| 60 |
-
sympy.Min: torch.min,
|
| 61 |
-
# Matrices
|
| 62 |
-
sympy.MatAdd: torch.add,
|
| 63 |
-
sympy.HadamardProduct: torch.mul,
|
| 64 |
-
sympy.Trace: torch.trace,
|
| 65 |
-
# Note: May raise error for integer matrices.
|
| 66 |
-
sympy.Determinant: torch.det,
|
| 67 |
-
}
|
| 68 |
-
|
| 69 |
-
class _Node(torch.nn.Module):
|
| 70 |
-
def __init__(self, *, expr, _memodict, _func_lookup, **kwargs):
|
| 71 |
-
super().__init__(**kwargs)
|
| 72 |
-
|
| 73 |
-
self._sympy_func = expr.func
|
| 74 |
-
|
| 75 |
-
if issubclass(expr.func, sympy.Float):
|
| 76 |
-
self._value = torch.nn.Parameter(torch.tensor(float(expr)))
|
| 77 |
-
self._torch_func = lambda: self._value
|
| 78 |
-
self._args = ()
|
| 79 |
-
elif issubclass(expr.func, sympy.UnevaluatedExpr):
|
| 80 |
-
if len(expr.args) != 1 or not issubclass(expr.args[0].func, sympy.Float):
|
| 81 |
-
raise ValueError("UnevaluatedExpr should only be used to wrap floats.")
|
| 82 |
-
self.register_buffer('_value', torch.tensor(float(expr.args[0])))
|
| 83 |
-
self._torch_func = lambda: self._value
|
| 84 |
-
self._args = ()
|
| 85 |
-
elif issubclass(expr.func, sympy.Integer):
|
| 86 |
-
# Can get here if expr is one of the Integer special cases,
|
| 87 |
-
# e.g. NegativeOne
|
| 88 |
-
self._value = int(expr)
|
| 89 |
-
self._torch_func = lambda: self._value
|
| 90 |
-
self._args = ()
|
| 91 |
-
elif issubclass(expr.func, sympy.Symbol):
|
| 92 |
-
self._name = expr.name
|
| 93 |
-
self._torch_func = lambda value: value
|
| 94 |
-
self._args = ((lambda memodict: memodict[expr.name]),)
|
| 95 |
-
else:
|
| 96 |
-
self._torch_func = _func_lookup[expr.func]
|
| 97 |
-
args = []
|
| 98 |
-
for arg in expr.args:
|
| 99 |
-
try:
|
| 100 |
-
arg_ = _memodict[arg]
|
| 101 |
-
except KeyError:
|
| 102 |
-
arg_ = type(self)(expr=arg, _memodict=_memodict, _func_lookup=_func_lookup, **kwargs)
|
| 103 |
-
_memodict[arg] = arg_
|
| 104 |
-
args.append(arg_)
|
| 105 |
-
self._args = torch.nn.ModuleList(args)
|
| 106 |
-
|
| 107 |
-
def sympy(self, _memodict):
|
| 108 |
-
if issubclass(self._sympy_func, sympy.Float):
|
| 109 |
-
return self._sympy_func(self._value.item())
|
| 110 |
-
elif issubclass(self._sympy_func, sympy.UnevaluatedExpr):
|
| 111 |
-
return self._sympy_func(self._value.item())
|
| 112 |
-
elif issubclass(self._sympy_func, sympy.Integer):
|
| 113 |
-
return self._sympy_func(self._value)
|
| 114 |
-
elif issubclass(self._sympy_func, sympy.Symbol):
|
| 115 |
-
return self._sympy_func(self._name)
|
| 116 |
-
else:
|
| 117 |
-
if issubclass(self._sympy_func, (sympy.Min, sympy.Max)):
|
| 118 |
-
evaluate = False
|
| 119 |
-
else:
|
| 120 |
-
evaluate = True
|
| 121 |
-
args = []
|
| 122 |
-
for arg in self._args:
|
| 123 |
-
try:
|
| 124 |
-
arg_ = _memodict[arg]
|
| 125 |
-
except KeyError:
|
| 126 |
-
arg_ = arg.sympy(_memodict)
|
| 127 |
-
_memodict[arg] = arg_
|
| 128 |
-
args.append(arg_)
|
| 129 |
-
return self._sympy_func(*args, evaluate=evaluate)
|
| 130 |
-
|
| 131 |
-
def forward(self, memodict):
|
| 132 |
-
args = []
|
| 133 |
-
for arg in self._args:
|
| 134 |
-
try:
|
| 135 |
-
arg_ = memodict[arg]
|
| 136 |
-
except KeyError:
|
| 137 |
-
arg_ = arg(memodict)
|
| 138 |
-
memodict[arg] = arg_
|
| 139 |
-
args.append(arg_)
|
| 140 |
-
return self._torch_func(*args)
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
class SingleSymPyModule(torch.nn.Module):
|
| 144 |
-
def __init__(self, expression, symbols_in,
|
| 145 |
-
extra_funcs=None, **kwargs):
|
| 146 |
-
super().__init__(**kwargs)
|
| 147 |
-
|
| 148 |
-
if extra_funcs is None:
|
| 149 |
-
extra_funcs = {}
|
| 150 |
-
_func_lookup = co.ChainMap(_global_func_lookup, extra_funcs)
|
| 151 |
-
|
| 152 |
-
_memodict = {}
|
| 153 |
-
self._node = _Node(expr=expression, _memodict=_memodict, _func_lookup=_func_lookup)
|
| 154 |
-
self._expression_string = str(expression)
|
| 155 |
-
self.symbols_in = [str(symbol) for symbol in symbols_in]
|
| 156 |
-
|
| 157 |
-
def __repr__(self):
|
| 158 |
-
return f"{type(self).__name__}(expression={self._expression_string})"
|
| 159 |
-
|
| 160 |
-
def sympy(self):
|
| 161 |
-
_memodict = {}
|
| 162 |
-
return self._node.sympy(_memodict)
|
| 163 |
-
|
| 164 |
-
def forward(self, X):
|
| 165 |
-
symbols = {symbol: X[:, i]
|
| 166 |
-
for i, symbol in enumerate(self.symbols_in)}
|
| 167 |
-
return self._node(symbols)
|
| 168 |
|
| 169 |
def sympy2torch(expression, symbols_in):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
return SingleSymPyModule(expression, symbols_in)
|
|
|
|
| 6 |
import collections as co
|
| 7 |
import functools as ft
|
| 8 |
import sympy
|
|
|
|
| 9 |
|
| 10 |
def _reduce(fn):
|
| 11 |
def fn_(*args):
|
| 12 |
return ft.reduce(fn, args)
|
| 13 |
return fn_
|
| 14 |
|
| 15 |
+
torch_initialized = False
|
| 16 |
+
torch = None
|
| 17 |
+
_global_func_lookup = None
|
| 18 |
+
_Node = None
|
| 19 |
+
SingleSymPyModule = None
|
| 20 |
+
|
| 21 |
+
def _initialize_torch():
|
| 22 |
+
global torch_initialized
|
| 23 |
+
global torch
|
| 24 |
+
global _global_func_lookup
|
| 25 |
+
global _Node
|
| 26 |
+
global SingleSymPyModule
|
| 27 |
+
|
| 28 |
+
# Way to lazy load torch, only if this is called,
|
| 29 |
+
# but still allow this module to be loaded in __init__
|
| 30 |
+
if not torch_initialized:
|
| 31 |
+
import torch as _torch
|
| 32 |
+
torch = _torch
|
| 33 |
+
|
| 34 |
+
_global_func_lookup = {
|
| 35 |
+
sympy.Mul: _reduce(torch.mul),
|
| 36 |
+
sympy.Add: _reduce(torch.add),
|
| 37 |
+
sympy.div: torch.div,
|
| 38 |
+
sympy.Abs: torch.abs,
|
| 39 |
+
sympy.sign: torch.sign,
|
| 40 |
+
# Note: May raise error for ints.
|
| 41 |
+
sympy.ceiling: torch.ceil,
|
| 42 |
+
sympy.floor: torch.floor,
|
| 43 |
+
sympy.log: torch.log,
|
| 44 |
+
sympy.exp: torch.exp,
|
| 45 |
+
sympy.sqrt: torch.sqrt,
|
| 46 |
+
sympy.cos: torch.cos,
|
| 47 |
+
sympy.acos: torch.acos,
|
| 48 |
+
sympy.sin: torch.sin,
|
| 49 |
+
sympy.asin: torch.asin,
|
| 50 |
+
sympy.tan: torch.tan,
|
| 51 |
+
sympy.atan: torch.atan,
|
| 52 |
+
sympy.atan2: torch.atan2,
|
| 53 |
+
# Note: May give NaN for complex results.
|
| 54 |
+
sympy.cosh: torch.cosh,
|
| 55 |
+
sympy.acosh: torch.acosh,
|
| 56 |
+
sympy.sinh: torch.sinh,
|
| 57 |
+
sympy.asinh: torch.asinh,
|
| 58 |
+
sympy.tanh: torch.tanh,
|
| 59 |
+
sympy.atanh: torch.atanh,
|
| 60 |
+
sympy.Pow: torch.pow,
|
| 61 |
+
sympy.re: torch.real,
|
| 62 |
+
sympy.im: torch.imag,
|
| 63 |
+
sympy.arg: torch.angle,
|
| 64 |
+
# Note: May raise error for ints and complexes
|
| 65 |
+
sympy.erf: torch.erf,
|
| 66 |
+
sympy.loggamma: torch.lgamma,
|
| 67 |
+
sympy.Eq: torch.eq,
|
| 68 |
+
sympy.Ne: torch.ne,
|
| 69 |
+
sympy.StrictGreaterThan: torch.gt,
|
| 70 |
+
sympy.StrictLessThan: torch.lt,
|
| 71 |
+
sympy.LessThan: torch.le,
|
| 72 |
+
sympy.GreaterThan: torch.ge,
|
| 73 |
+
sympy.And: torch.logical_and,
|
| 74 |
+
sympy.Or: torch.logical_or,
|
| 75 |
+
sympy.Not: torch.logical_not,
|
| 76 |
+
sympy.Max: torch.max,
|
| 77 |
+
sympy.Min: torch.min,
|
| 78 |
+
# Matrices
|
| 79 |
+
sympy.MatAdd: torch.add,
|
| 80 |
+
sympy.HadamardProduct: torch.mul,
|
| 81 |
+
sympy.Trace: torch.trace,
|
| 82 |
+
# Note: May raise error for integer matrices.
|
| 83 |
+
sympy.Determinant: torch.det,
|
| 84 |
+
}
|
| 85 |
+
|
| 86 |
+
class _Node(torch.nn.Module):
|
| 87 |
+
def __init__(self, *, expr, _memodict, _func_lookup, **kwargs):
|
| 88 |
+
super().__init__(**kwargs)
|
| 89 |
+
|
| 90 |
+
self._sympy_func = expr.func
|
| 91 |
+
|
| 92 |
+
if issubclass(expr.func, sympy.Float):
|
| 93 |
+
self._value = torch.nn.Parameter(torch.tensor(float(expr)))
|
| 94 |
+
self._torch_func = lambda: self._value
|
| 95 |
+
self._args = ()
|
| 96 |
+
elif issubclass(expr.func, sympy.UnevaluatedExpr):
|
| 97 |
+
if len(expr.args) != 1 or not issubclass(expr.args[0].func, sympy.Float):
|
| 98 |
+
raise ValueError("UnevaluatedExpr should only be used to wrap floats.")
|
| 99 |
+
self.register_buffer('_value', torch.tensor(float(expr.args[0])))
|
| 100 |
+
self._torch_func = lambda: self._value
|
| 101 |
+
self._args = ()
|
| 102 |
+
elif issubclass(expr.func, sympy.Integer):
|
| 103 |
+
# Can get here if expr is one of the Integer special cases,
|
| 104 |
+
# e.g. NegativeOne
|
| 105 |
+
self._value = int(expr)
|
| 106 |
+
self._torch_func = lambda: self._value
|
| 107 |
+
self._args = ()
|
| 108 |
+
elif issubclass(expr.func, sympy.Symbol):
|
| 109 |
+
self._name = expr.name
|
| 110 |
+
self._torch_func = lambda value: value
|
| 111 |
+
self._args = ((lambda memodict: memodict[expr.name]),)
|
| 112 |
+
else:
|
| 113 |
+
self._torch_func = _func_lookup[expr.func]
|
| 114 |
+
args = []
|
| 115 |
+
for arg in expr.args:
|
| 116 |
+
try:
|
| 117 |
+
arg_ = _memodict[arg]
|
| 118 |
+
except KeyError:
|
| 119 |
+
arg_ = type(self)(expr=arg, _memodict=_memodict, _func_lookup=_func_lookup, **kwargs)
|
| 120 |
+
_memodict[arg] = arg_
|
| 121 |
+
args.append(arg_)
|
| 122 |
+
self._args = torch.nn.ModuleList(args)
|
| 123 |
+
|
| 124 |
+
def sympy(self, _memodict):
|
| 125 |
+
if issubclass(self._sympy_func, sympy.Float):
|
| 126 |
+
return self._sympy_func(self._value.item())
|
| 127 |
+
elif issubclass(self._sympy_func, sympy.UnevaluatedExpr):
|
| 128 |
+
return self._sympy_func(self._value.item())
|
| 129 |
+
elif issubclass(self._sympy_func, sympy.Integer):
|
| 130 |
+
return self._sympy_func(self._value)
|
| 131 |
+
elif issubclass(self._sympy_func, sympy.Symbol):
|
| 132 |
+
return self._sympy_func(self._name)
|
| 133 |
+
else:
|
| 134 |
+
if issubclass(self._sympy_func, (sympy.Min, sympy.Max)):
|
| 135 |
+
evaluate = False
|
| 136 |
+
else:
|
| 137 |
+
evaluate = True
|
| 138 |
+
args = []
|
| 139 |
+
for arg in self._args:
|
| 140 |
+
try:
|
| 141 |
+
arg_ = _memodict[arg]
|
| 142 |
+
except KeyError:
|
| 143 |
+
arg_ = arg.sympy(_memodict)
|
| 144 |
+
_memodict[arg] = arg_
|
| 145 |
+
args.append(arg_)
|
| 146 |
+
return self._sympy_func(*args, evaluate=evaluate)
|
| 147 |
+
|
| 148 |
+
def forward(self, memodict):
|
| 149 |
+
args = []
|
| 150 |
+
for arg in self._args:
|
| 151 |
+
try:
|
| 152 |
+
arg_ = memodict[arg]
|
| 153 |
+
except KeyError:
|
| 154 |
+
arg_ = arg(memodict)
|
| 155 |
+
memodict[arg] = arg_
|
| 156 |
+
args.append(arg_)
|
| 157 |
+
return self._torch_func(*args)
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
class SingleSymPyModule(torch.nn.Module):
|
| 161 |
+
def __init__(self, expression, symbols_in,
|
| 162 |
+
extra_funcs=None, **kwargs):
|
| 163 |
+
super().__init__(**kwargs)
|
| 164 |
+
|
| 165 |
+
if extra_funcs is None:
|
| 166 |
+
extra_funcs = {}
|
| 167 |
+
_func_lookup = co.ChainMap(_global_func_lookup, extra_funcs)
|
| 168 |
+
|
| 169 |
+
_memodict = {}
|
| 170 |
+
self._node = _Node(expr=expression, _memodict=_memodict, _func_lookup=_func_lookup)
|
| 171 |
+
self._expression_string = str(expression)
|
| 172 |
+
self.symbols_in = [str(symbol) for symbol in symbols_in]
|
| 173 |
+
|
| 174 |
+
def __repr__(self):
|
| 175 |
+
return f"{type(self).__name__}(expression={self._expression_string})"
|
| 176 |
+
|
| 177 |
+
def sympy(self):
|
| 178 |
+
_memodict = {}
|
| 179 |
+
return self._node.sympy(_memodict)
|
| 180 |
+
|
| 181 |
+
def forward(self, X):
|
| 182 |
+
symbols = {symbol: X[:, i]
|
| 183 |
+
for i, symbol in enumerate(self.symbols_in)}
|
| 184 |
+
return self._node(symbols)
|
| 185 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
def sympy2torch(expression, symbols_in):
|
| 188 |
+
global torch
|
| 189 |
+
global _Node
|
| 190 |
+
global SingleSymPyModule
|
| 191 |
+
|
| 192 |
+
_initialize_torch()
|
| 193 |
+
|
| 194 |
return SingleSymPyModule(expression, symbols_in)
|
test/test_jax.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import unittest
|
| 2 |
import numpy as np
|
| 3 |
-
from pysr import
|
| 4 |
from jax import numpy as jnp
|
| 5 |
from jax import random
|
| 6 |
from jax import grad
|
|
|
|
| 1 |
import unittest
|
| 2 |
import numpy as np
|
| 3 |
+
from pysr import sympy2jax
|
| 4 |
from jax import numpy as jnp
|
| 5 |
from jax import random
|
| 6 |
from jax import grad
|