Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2025 SparkAudio | |
| # 2025 Xinsheng Wang (w.xinshawn@gmail.com) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import torch | |
| import torch.nn as nn | |
| from typing import List | |
| from sparktts.modules.blocks.vocos import VocosBackbone | |
| from sparktts.modules.blocks.samper import SamplingBlock | |
| class Decoder(nn.Module): | |
| """Decoder module with convnext and upsampling blocks | |
| Args: | |
| sample_ratios (List[int]): sample ratios | |
| example: [2, 2] means downsample by 2x and then upsample by 2x | |
| """ | |
| def __init__( | |
| self, | |
| input_channels: int, | |
| vocos_dim: int, | |
| vocos_intermediate_dim: int, | |
| vocos_num_layers: int, | |
| out_channels: int, | |
| condition_dim: int = None, | |
| sample_ratios: List[int] = [1, 1], | |
| use_tanh_at_final: bool = False, | |
| ): | |
| super().__init__() | |
| self.linear_pre = nn.Linear(input_channels, vocos_dim) | |
| modules = [ | |
| nn.Sequential( | |
| SamplingBlock( | |
| dim=vocos_dim, | |
| groups=vocos_dim, | |
| upsample_scale=ratio, | |
| ), | |
| VocosBackbone( | |
| input_channels=vocos_dim, | |
| dim=vocos_dim, | |
| intermediate_dim=vocos_intermediate_dim, | |
| num_layers=2, | |
| condition_dim=None, | |
| ), | |
| ) | |
| for ratio in sample_ratios | |
| ] | |
| self.downsample = nn.Sequential(*modules) | |
| self.vocos_backbone = VocosBackbone( | |
| input_channels=vocos_dim, | |
| dim=vocos_dim, | |
| intermediate_dim=vocos_intermediate_dim, | |
| num_layers=vocos_num_layers, | |
| condition_dim=condition_dim, | |
| ) | |
| self.linear = nn.Linear(vocos_dim, out_channels) | |
| self.use_tanh_at_final = use_tanh_at_final | |
| def forward(self, x: torch.Tensor, c: torch.Tensor = None): | |
| """encoder forward. | |
| Args: | |
| x (torch.Tensor): (batch_size, input_channels, length) | |
| Returns: | |
| x (torch.Tensor): (batch_size, encode_channels, length) | |
| """ | |
| x = self.linear_pre(x.transpose(1, 2)) | |
| x = self.downsample(x).transpose(1, 2) | |
| x = self.vocos_backbone(x, condition=c) | |
| x = self.linear(x).transpose(1, 2) | |
| if self.use_tanh_at_final: | |
| x = torch.tanh(x) | |
| return x | |
| # test | |
| if __name__ == "__main__": | |
| test_input = torch.randn(8, 1024, 50) # Batch size = 8, 1024 channels, length = 50 | |
| condition = torch.randn(8, 256) | |
| decoder = Decoder( | |
| input_channels=1024, | |
| vocos_dim=384, | |
| vocos_intermediate_dim=2048, | |
| vocos_num_layers=12, | |
| out_channels=256, | |
| condition_dim=256, | |
| sample_ratios=[2, 2], | |
| ) | |
| output = decoder(test_input, condition) | |
| print(output.shape) # torch.Size([8, 256, 200]) | |
| if output.shape == torch.Size([8, 256, 200]): | |
| print("Decoder test passed") | |
| else: | |
| print("Decoder test failed") | |