Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2025 SparkAudio | |
| # 2025 Xinsheng Wang (w.xinshawn@gmail.com) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import torch | |
| import torch.nn as nn | |
| from typing import Tuple | |
| from torch.nn.utils import weight_norm, remove_weight_norm | |
| from typing import Optional | |
| class ConvNeXtBlock(nn.Module): | |
| """ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal. | |
| Args: | |
| dim (int): Number of input channels. | |
| intermediate_dim (int): Dimensionality of the intermediate layer. | |
| layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling. | |
| Defaults to None. | |
| adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. | |
| None means non-conditional LayerNorm. Defaults to None. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| intermediate_dim: int, | |
| layer_scale_init_value: float, | |
| condition_dim: Optional[int] = None, | |
| ): | |
| super().__init__() | |
| self.dwconv = nn.Conv1d( | |
| dim, dim, kernel_size=7, padding=3, groups=dim | |
| ) # depthwise conv | |
| self.adanorm = condition_dim is not None | |
| if condition_dim: | |
| self.norm = AdaLayerNorm(condition_dim, dim, eps=1e-6) | |
| else: | |
| self.norm = nn.LayerNorm(dim, eps=1e-6) | |
| self.pwconv1 = nn.Linear( | |
| dim, intermediate_dim | |
| ) # pointwise/1x1 convs, implemented with linear layers | |
| self.act = nn.GELU() | |
| self.pwconv2 = nn.Linear(intermediate_dim, dim) | |
| self.gamma = ( | |
| nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) | |
| if layer_scale_init_value > 0 | |
| else None | |
| ) | |
| def forward( | |
| self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None | |
| ) -> torch.Tensor: | |
| residual = x | |
| x = self.dwconv(x) | |
| x = x.transpose(1, 2) # (B, C, T) -> (B, T, C) | |
| if self.adanorm: | |
| assert cond_embedding_id is not None | |
| x = self.norm(x, cond_embedding_id) | |
| else: | |
| x = self.norm(x) | |
| x = self.pwconv1(x) | |
| x = self.act(x) | |
| x = self.pwconv2(x) | |
| if self.gamma is not None: | |
| x = self.gamma * x | |
| x = x.transpose(1, 2) # (B, T, C) -> (B, C, T) | |
| x = residual + x | |
| return x | |
| class AdaLayerNorm(nn.Module): | |
| """ | |
| Adaptive Layer Normalization module with learnable embeddings per `num_embeddings` classes | |
| Args: | |
| condition_dim (int): Dimension of the condition. | |
| embedding_dim (int): Dimension of the embeddings. | |
| """ | |
| def __init__(self, condition_dim: int, embedding_dim: int, eps: float = 1e-6): | |
| super().__init__() | |
| self.eps = eps | |
| self.dim = embedding_dim | |
| self.scale = nn.Linear(condition_dim, embedding_dim) | |
| self.shift = nn.Linear(condition_dim, embedding_dim) | |
| torch.nn.init.ones_(self.scale.weight) | |
| torch.nn.init.zeros_(self.shift.weight) | |
| def forward(self, x: torch.Tensor, cond_embedding: torch.Tensor) -> torch.Tensor: | |
| scale = self.scale(cond_embedding) | |
| shift = self.shift(cond_embedding) | |
| x = nn.functional.layer_norm(x, (self.dim,), eps=self.eps) | |
| x = x * scale.unsqueeze(1) + shift.unsqueeze(1) | |
| return x | |
| class ResBlock1(nn.Module): | |
| """ | |
| ResBlock adapted from HiFi-GAN V1 (https://github.com/jik876/hifi-gan) with dilated 1D convolutions, | |
| but without upsampling layers. | |
| Args: | |
| dim (int): Number of input channels. | |
| kernel_size (int, optional): Size of the convolutional kernel. Defaults to 3. | |
| dilation (tuple[int], optional): Dilation factors for the dilated convolutions. | |
| Defaults to (1, 3, 5). | |
| lrelu_slope (float, optional): Negative slope of the LeakyReLU activation function. | |
| Defaults to 0.1. | |
| layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling. | |
| Defaults to None. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| kernel_size: int = 3, | |
| dilation: Tuple[int, int, int] = (1, 3, 5), | |
| lrelu_slope: float = 0.1, | |
| layer_scale_init_value: Optional[float] = None, | |
| ): | |
| super().__init__() | |
| self.lrelu_slope = lrelu_slope | |
| self.convs1 = nn.ModuleList( | |
| [ | |
| weight_norm( | |
| nn.Conv1d( | |
| dim, | |
| dim, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[0], | |
| padding=self.get_padding(kernel_size, dilation[0]), | |
| ) | |
| ), | |
| weight_norm( | |
| nn.Conv1d( | |
| dim, | |
| dim, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[1], | |
| padding=self.get_padding(kernel_size, dilation[1]), | |
| ) | |
| ), | |
| weight_norm( | |
| nn.Conv1d( | |
| dim, | |
| dim, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[2], | |
| padding=self.get_padding(kernel_size, dilation[2]), | |
| ) | |
| ), | |
| ] | |
| ) | |
| self.convs2 = nn.ModuleList( | |
| [ | |
| weight_norm( | |
| nn.Conv1d( | |
| dim, | |
| dim, | |
| kernel_size, | |
| 1, | |
| dilation=1, | |
| padding=self.get_padding(kernel_size, 1), | |
| ) | |
| ), | |
| weight_norm( | |
| nn.Conv1d( | |
| dim, | |
| dim, | |
| kernel_size, | |
| 1, | |
| dilation=1, | |
| padding=self.get_padding(kernel_size, 1), | |
| ) | |
| ), | |
| weight_norm( | |
| nn.Conv1d( | |
| dim, | |
| dim, | |
| kernel_size, | |
| 1, | |
| dilation=1, | |
| padding=self.get_padding(kernel_size, 1), | |
| ) | |
| ), | |
| ] | |
| ) | |
| self.gamma = nn.ParameterList( | |
| [ | |
| ( | |
| nn.Parameter( | |
| layer_scale_init_value * torch.ones(dim, 1), requires_grad=True | |
| ) | |
| if layer_scale_init_value is not None | |
| else None | |
| ), | |
| ( | |
| nn.Parameter( | |
| layer_scale_init_value * torch.ones(dim, 1), requires_grad=True | |
| ) | |
| if layer_scale_init_value is not None | |
| else None | |
| ), | |
| ( | |
| nn.Parameter( | |
| layer_scale_init_value * torch.ones(dim, 1), requires_grad=True | |
| ) | |
| if layer_scale_init_value is not None | |
| else None | |
| ), | |
| ] | |
| ) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| for c1, c2, gamma in zip(self.convs1, self.convs2, self.gamma): | |
| xt = torch.nn.functional.leaky_relu(x, negative_slope=self.lrelu_slope) | |
| xt = c1(xt) | |
| xt = torch.nn.functional.leaky_relu(xt, negative_slope=self.lrelu_slope) | |
| xt = c2(xt) | |
| if gamma is not None: | |
| xt = gamma * xt | |
| x = xt + x | |
| return x | |
| def remove_weight_norm(self): | |
| for l in self.convs1: | |
| remove_weight_norm(l) | |
| for l in self.convs2: | |
| remove_weight_norm(l) | |
| def get_padding(kernel_size: int, dilation: int = 1) -> int: | |
| return int((kernel_size * dilation - dilation) / 2) | |
| class Backbone(nn.Module): | |
| """Base class for the generator's backbone. It preserves the same temporal resolution across all layers.""" | |
| def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: | |
| """ | |
| Args: | |
| x (Tensor): Input tensor of shape (B, C, L), where B is the batch size, | |
| C denotes output features, and L is the sequence length. | |
| Returns: | |
| Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length, | |
| and H denotes the model dimension. | |
| """ | |
| raise NotImplementedError("Subclasses must implement the forward method.") | |
| class VocosBackbone(Backbone): | |
| """ | |
| Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization | |
| Args: | |
| input_channels (int): Number of input features channels. | |
| dim (int): Hidden dimension of the model. | |
| intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock. | |
| num_layers (int): Number of ConvNeXtBlock layers. | |
| layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`. | |
| adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. | |
| None means non-conditional model. Defaults to None. | |
| """ | |
| def __init__( | |
| self, | |
| input_channels: int, | |
| dim: int, | |
| intermediate_dim: int, | |
| num_layers: int, | |
| layer_scale_init_value: Optional[float] = None, | |
| condition_dim: Optional[int] = None, | |
| ): | |
| super().__init__() | |
| self.input_channels = input_channels | |
| self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3) | |
| self.adanorm = condition_dim is not None | |
| if condition_dim: | |
| self.norm = AdaLayerNorm(condition_dim, dim, eps=1e-6) | |
| else: | |
| self.norm = nn.LayerNorm(dim, eps=1e-6) | |
| layer_scale_init_value = layer_scale_init_value or 1 / num_layers | |
| self.convnext = nn.ModuleList( | |
| [ | |
| ConvNeXtBlock( | |
| dim=dim, | |
| intermediate_dim=intermediate_dim, | |
| layer_scale_init_value=layer_scale_init_value, | |
| condition_dim=condition_dim, | |
| ) | |
| for _ in range(num_layers) | |
| ] | |
| ) | |
| self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6) | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, (nn.Conv1d, nn.Linear)): | |
| nn.init.trunc_normal_(m.weight, std=0.02) | |
| nn.init.constant_(m.bias, 0) | |
| def forward(self, x: torch.Tensor, condition: torch.Tensor = None) -> torch.Tensor: | |
| x = self.embed(x) | |
| if self.adanorm: | |
| assert condition is not None | |
| x = self.norm(x.transpose(1, 2), condition) | |
| else: | |
| x = self.norm(x.transpose(1, 2)) | |
| x = x.transpose(1, 2) | |
| for conv_block in self.convnext: | |
| x = conv_block(x, condition) | |
| x = self.final_layer_norm(x.transpose(1, 2)) | |
| return x | |
| class VocosResNetBackbone(Backbone): | |
| """ | |
| Vocos backbone module built with ResBlocks. | |
| Args: | |
| input_channels (int): Number of input features channels. | |
| dim (int): Hidden dimension of the model. | |
| num_blocks (int): Number of ResBlock1 blocks. | |
| layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None. | |
| """ | |
| def __init__( | |
| self, | |
| input_channels, | |
| dim, | |
| num_blocks, | |
| layer_scale_init_value=None, | |
| ): | |
| super().__init__() | |
| self.input_channels = input_channels | |
| self.embed = weight_norm( | |
| nn.Conv1d(input_channels, dim, kernel_size=3, padding=1) | |
| ) | |
| layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3 | |
| self.resnet = nn.Sequential( | |
| *[ | |
| ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value) | |
| for _ in range(num_blocks) | |
| ] | |
| ) | |
| def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: | |
| x = self.embed(x) | |
| x = self.resnet(x) | |
| x = x.transpose(1, 2) | |
| return x | |