Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2024 Xinsheng Wang (w.xinshawn@gmail.com) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Adapted from https://github.com/descriptinc/descript-audio-codec under the Apache License 2.0 | |
| import torch.nn as nn | |
| from sparktts.modules.blocks.layers import ( | |
| Snake1d, | |
| WNConv1d, | |
| ResidualUnit, | |
| WNConvTranspose1d, | |
| init_weights, | |
| ) | |
| class DecoderBlock(nn.Module): | |
| def __init__( | |
| self, | |
| input_dim: int = 16, | |
| output_dim: int = 8, | |
| kernel_size: int = 2, | |
| stride: int = 1, | |
| ): | |
| super().__init__() | |
| self.block = nn.Sequential( | |
| Snake1d(input_dim), | |
| WNConvTranspose1d( | |
| input_dim, | |
| output_dim, | |
| kernel_size=kernel_size, | |
| stride=stride, | |
| padding=(kernel_size - stride) // 2, | |
| ), | |
| ResidualUnit(output_dim, dilation=1), | |
| ResidualUnit(output_dim, dilation=3), | |
| ResidualUnit(output_dim, dilation=9), | |
| ) | |
| def forward(self, x): | |
| return self.block(x) | |
| class WaveGenerator(nn.Module): | |
| def __init__( | |
| self, | |
| input_channel, | |
| channels, | |
| rates, | |
| kernel_sizes, | |
| d_out: int = 1, | |
| ): | |
| super().__init__() | |
| # Add first conv layer | |
| layers = [WNConv1d(input_channel, channels, kernel_size=7, padding=3)] | |
| # Add upsampling + MRF blocks | |
| for i, (kernel_size, stride) in enumerate(zip(kernel_sizes, rates)): | |
| input_dim = channels // 2**i | |
| output_dim = channels // 2 ** (i + 1) | |
| layers += [DecoderBlock(input_dim, output_dim, kernel_size, stride)] | |
| # Add final conv layer | |
| layers += [ | |
| Snake1d(output_dim), | |
| WNConv1d(output_dim, d_out, kernel_size=7, padding=3), | |
| nn.Tanh(), | |
| ] | |
| self.model = nn.Sequential(*layers) | |
| self.apply(init_weights) | |
| def forward(self, x): | |
| return self.model(x) | |