Spaces:
Runtime error
Runtime error
chat interface
Browse files
app.py
CHANGED
|
@@ -1,73 +1,50 @@
|
|
| 1 |
import spaces
|
| 2 |
import torch
|
| 3 |
-
import re
|
| 4 |
import gradio as gr
|
| 5 |
from threading import Thread
|
| 6 |
-
from transformers import
|
|
|
|
|
|
|
| 7 |
import subprocess
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
|
| 12 |
-
#
|
| 13 |
model_id = "vikhyatk/moondream2"
|
| 14 |
revision = "2024-04-02"
|
| 15 |
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
|
| 16 |
moondream = AutoModelForCausalLM.from_pretrained(
|
| 17 |
-
model_id,
|
| 18 |
torch_dtype=torch.bfloat16, device_map={"": "cuda"},
|
| 19 |
-
attn_implementation="flash_attention_2"
|
|
|
|
| 20 |
moondream.eval()
|
| 21 |
|
| 22 |
-
|
| 23 |
@spaces.GPU(duration=10)
|
| 24 |
-
def
|
|
|
|
| 25 |
image_embeds = moondream.encode_image(img)
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
"image_embeds": image_embeds,
|
| 31 |
-
"question": prompt,
|
| 32 |
-
"tokenizer": tokenizer,
|
| 33 |
-
"streamer": streamer,
|
| 34 |
-
},
|
| 35 |
-
)
|
| 36 |
-
thread.start()
|
| 37 |
-
buffer = ""
|
| 38 |
-
for new_text in streamer:
|
| 39 |
-
buffer += new_text
|
| 40 |
-
yield buffer.strip()
|
| 41 |
-
|
| 42 |
-
# Create the Gradio interface
|
| 43 |
-
with gr.Blocks(theme="Monochrome") as demo:
|
| 44 |
-
gr.Markdown(
|
| 45 |
-
"""
|
| 46 |
-
# AskMoondream: Moondream 2 Demonstration Space
|
| 47 |
-
Moondream2 is a 1.86B parameter model initialized with weights from SigLIP and Phi 1.5.
|
| 48 |
-
Modularity AI presents this open source huggingface space for running fast experimental inferences on Moondream2.
|
| 49 |
-
"""
|
| 50 |
-
)
|
| 51 |
|
| 52 |
-
# Chatbot layout
|
| 53 |
-
chatbot = gr.Chatbot()
|
| 54 |
|
| 55 |
-
|
|
|
|
|
|
|
| 56 |
with gr.Row():
|
| 57 |
img = gr.Image(type="pil", label="Upload an Image")
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
# Function to send message and get response
|
| 64 |
-
def send_message(history, prompt):
|
| 65 |
-
history.append((prompt, None))
|
| 66 |
-
response = answer_question(img.value, prompt)
|
| 67 |
-
history.append((None, response))
|
| 68 |
-
return history, "" # Clear the input box
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
|
|
|
| 72 |
|
| 73 |
-
demo
|
|
|
|
|
|
| 1 |
import spaces
|
| 2 |
import torch
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
from threading import Thread
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 6 |
+
|
| 7 |
+
# Install the necessary package for the model
|
| 8 |
import subprocess
|
| 9 |
|
| 10 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
|
| 11 |
+
shell=True)
|
| 12 |
|
| 13 |
+
# Initialize the tokenizer and model
|
| 14 |
model_id = "vikhyatk/moondream2"
|
| 15 |
revision = "2024-04-02"
|
| 16 |
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
|
| 17 |
moondream = AutoModelForCausalLM.from_pretrained(
|
| 18 |
+
model_id, revision=revision, trust_remote_code=True,
|
| 19 |
torch_dtype=torch.bfloat16, device_map={"": "cuda"},
|
| 20 |
+
attn_implementation="flash_attention_2"
|
| 21 |
+
)
|
| 22 |
moondream.eval()
|
| 23 |
|
| 24 |
+
|
| 25 |
@spaces.GPU(duration=10)
|
| 26 |
+
def chatbot_response(img, text_input):
|
| 27 |
+
# Here we assume an encoded image processing if needed
|
| 28 |
image_embeds = moondream.encode_image(img)
|
| 29 |
+
inputs = tokenizer.encode(text_input, return_tensors="pt")
|
| 30 |
+
outputs = moondream.generate(inputs, max_length=200)
|
| 31 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 32 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
# Setting up Gradio Interface
|
| 36 |
+
with gr.Blocks(theme="Monochrome") as demo:
|
| 37 |
+
gr.Markdown("# AskMoondream Chatbot")
|
| 38 |
with gr.Row():
|
| 39 |
img = gr.Image(type="pil", label="Upload an Image")
|
| 40 |
+
text_input = gr.Textbox(label="Ask a question or describe an image", placeholder="Type here...")
|
| 41 |
+
with gr.Row():
|
| 42 |
+
submit = gr.Button("Submit")
|
| 43 |
+
response = gr.TextArea(label="Response", placeholder="Moondream's response will appear here...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
# Define what happens when the user interacts with the interface
|
| 46 |
+
submit.click(chatbot_response, inputs=[img, text_input], outputs=response)
|
| 47 |
+
text_input.submit(chatbot_response, inputs=[img, text_input], outputs=response)
|
| 48 |
|
| 49 |
+
# Launch the demo
|
| 50 |
+
demo.queue().launch()
|