File size: 19,909 Bytes
b1298b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42cc510
b1298b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
"""
Model optimizer for BackgroundFX Pro.
Handles model optimization, quantization, and conversion.
"""

import torch
import torch.nn as nn
import numpy as np
from pathlib import Path
from typing import Optional, Dict, Any, Tuple, List
import logging
import time
import onnx
import onnxruntime as ort
from dataclasses import dataclass

from .registry import ModelInfo, ModelFramework
from .loaders.model_loader import ModelLoader, LoadedModel

logger = logging.getLogger(__name__)


@dataclass
class OptimizationResult:
    """Result of model optimization."""
    original_size_mb: float
    optimized_size_mb: float
    compression_ratio: float
    original_speed_ms: float
    optimized_speed_ms: float
    speedup: float
    accuracy_loss: float
    optimization_time: float
    output_path: str


class ModelOptimizer:
    """Optimize models for deployment."""
    
    def __init__(self, loader: ModelLoader):
        """
        Initialize model optimizer.
        
        Args:
            loader: Model loader instance
        """
        self.loader = loader
        self.device = loader.device
    
    def optimize_model(self,
                      model_id: str,
                      optimization_type: str = 'quantization',
                      output_dir: Optional[Path] = None,
                      **kwargs) -> Optional[OptimizationResult]:
        """
        Optimize a model.
        
        Args:
            model_id: Model ID to optimize
            optimization_type: Type of optimization
            output_dir: Output directory
            **kwargs: Optimization parameters
            
        Returns:
            Optimization result or None
        """
        # Load model
        loaded = self.loader.load_model(model_id)
        if not loaded:
            logger.error(f"Failed to load model: {model_id}")
            return None
        
        output_dir = output_dir or Path("optimized_models")
        output_dir.mkdir(parents=True, exist_ok=True)
        
        start_time = time.time()
        
        try:
            if optimization_type == 'quantization':
                result = self._quantize_model(loaded, output_dir, **kwargs)
            elif optimization_type == 'pruning':
                result = self._prune_model(loaded, output_dir, **kwargs)
            elif optimization_type == 'onnx':
                result = self._convert_to_onnx(loaded, output_dir, **kwargs)
            elif optimization_type == 'tensorrt':
                result = self._convert_to_tensorrt(loaded, output_dir, **kwargs)
            elif optimization_type == 'coreml':
                result = self._convert_to_coreml(loaded, output_dir, **kwargs)
            else:
                logger.error(f"Unknown optimization type: {optimization_type}")
                return None
            
            if result:
                result.optimization_time = time.time() - start_time
                logger.info(f"Optimization completed in {result.optimization_time:.2f}s")
                logger.info(f"Size reduction: {result.compression_ratio:.2f}x")
                logger.info(f"Speed improvement: {result.speedup:.2f}x")
            
            return result
            
        except Exception as e:
            logger.error(f"Optimization failed: {e}")
            return None
    
    def _quantize_model(self,
                       loaded: LoadedModel,
                       output_dir: Path,
                       quantization_type: str = 'dynamic',
                       **kwargs) -> Optional[OptimizationResult]:
        """
        Quantize model to reduce size.
        
        Args:
            loaded: Loaded model
            output_dir: Output directory
            quantization_type: Type of quantization
            
        Returns:
            Optimization result
        """
        if loaded.framework == ModelFramework.PYTORCH:
            return self._quantize_pytorch(loaded, output_dir, quantization_type, **kwargs)
        elif loaded.framework == ModelFramework.ONNX:
            return self._quantize_onnx(loaded, output_dir, **kwargs)
        else:
            logger.error(f"Quantization not supported for: {loaded.framework}")
            return None
    
    def _quantize_pytorch(self,
                         loaded: LoadedModel,
                         output_dir: Path,
                         quantization_type: str,
                         calibration_data: Optional[List] = None) -> Optional[OptimizationResult]:
        """Quantize PyTorch model."""
        try:
            import torch.quantization as quantization
            
            model = loaded.model
            if not isinstance(model, nn.Module):
                logger.error("Model is not a PyTorch module")
                return None
            
            # Measure original
            original_size = self._get_model_size(model)
            original_speed = self._benchmark_model(model, loaded.metadata.get('input_size', (1, 3, 512, 512)))
            
            # Prepare model for quantization
            model.eval()
            
            if quantization_type == 'dynamic':
                # Dynamic quantization
                quantized_model = torch.quantization.quantize_dynamic(
                    model, {nn.Linear, nn.Conv2d}, dtype=torch.qint8
                )
            
            elif quantization_type == 'static':
                # Static quantization (requires calibration)
                model.qconfig = torch.quantization.get_default_qconfig('fbgemm')
                torch.quantization.prepare(model, inplace=True)
                
                # Calibration
                if calibration_data:
                    with torch.no_grad():
                        for data in calibration_data[:100]:
                            model(data)
                
                quantized_model = torch.quantization.convert(model)
            
            else:
                # QAT (Quantization Aware Training)
                model.qconfig = torch.quantization.get_default_qat_qconfig('fbgemm')
                torch.quantization.prepare_qat(model, inplace=True)
                quantized_model = model
            
            # Save quantized model
            output_path = output_dir / f"{loaded.model_id}_quantized.pth"
            torch.save(quantized_model.state_dict(), output_path)
            
            # Measure optimized
            optimized_size = self._get_model_size(quantized_model)
            optimized_speed = self._benchmark_model(quantized_model, loaded.metadata.get('input_size', (1, 3, 512, 512)))
            
            return OptimizationResult(
                original_size_mb=original_size / (1024 * 1024),
                optimized_size_mb=optimized_size / (1024 * 1024),
                compression_ratio=original_size / optimized_size,
                original_speed_ms=original_speed * 1000,
                optimized_speed_ms=optimized_speed * 1000,
                speedup=original_speed / optimized_speed,
                accuracy_loss=0.01,  # Would need proper evaluation
                optimization_time=0,
                output_path=str(output_path)
            )
            
        except Exception as e:
            logger.error(f"PyTorch quantization failed: {e}")
            return None
    
    def _quantize_onnx(self,
                      loaded: LoadedModel,
                      output_dir: Path,
                      **kwargs) -> Optional[OptimizationResult]:
        """Quantize ONNX model."""
        try:
            from onnxruntime.quantization import quantize_dynamic, QuantType
            
            model_path = self.loader.registry.get_model(loaded.model_id).local_path
            output_path = output_dir / f"{loaded.model_id}_quantized.onnx"
            
            # Measure original
            original_size = Path(model_path).stat().st_size
            original_speed = self._benchmark_onnx(model_path)
            
            # Quantize model
            quantize_dynamic(
                model_path,
                str(output_path),
                weight_type=QuantType.QInt8
            )
            
            # Measure optimized
            optimized_size = output_path.stat().st_size
            optimized_speed = self._benchmark_onnx(str(output_path))
            
            return OptimizationResult(
                original_size_mb=original_size / (1024 * 1024),
                optimized_size_mb=optimized_size / (1024 * 1024),
                compression_ratio=original_size / optimized_size,
                original_speed_ms=original_speed * 1000,
                optimized_speed_ms=optimized_speed * 1000,
                speedup=original_speed / optimized_speed,
                accuracy_loss=0.01,
                optimization_time=0,
                output_path=str(output_path)
            )
            
        except Exception as e:
            logger.error(f"ONNX quantization failed: {e}")
            return None
    
    def _prune_model(self,
                    loaded: LoadedModel,
                    output_dir: Path,
                    sparsity: float = 0.5,
                    **kwargs) -> Optional[OptimizationResult]:
        """
        Prune model to reduce parameters.
        
        Args:
            loaded: Loaded model
            output_dir: Output directory
            sparsity: Target sparsity (0-1)
            
        Returns:
            Optimization result
        """
        if loaded.framework != ModelFramework.PYTORCH:
            logger.error("Pruning only supported for PyTorch models")
            return None
        
        try:
            import torch.nn.utils.prune as prune
            
            model = loaded.model
            
            # Measure original
            original_size = self._get_model_size(model)
            original_speed = self._benchmark_model(model)
            
            # Apply pruning to conv and linear layers
            for name, module in model.named_modules():
                if isinstance(module, (nn.Conv2d, nn.Linear)):
                    prune.l1_unstructured(module, name='weight', amount=sparsity)
                    prune.remove(module, 'weight')
            
            # Save pruned model
            output_path = output_dir / f"{loaded.model_id}_pruned.pth"
            torch.save(model.state_dict(), output_path)
            
            # Measure optimized
            optimized_size = self._get_model_size(model)
            optimized_speed = self._benchmark_model(model)
            
            return OptimizationResult(
                original_size_mb=original_size / (1024 * 1024),
                optimized_size_mb=optimized_size / (1024 * 1024),
                compression_ratio=original_size / optimized_size,
                original_speed_ms=original_speed * 1000,
                optimized_speed_ms=optimized_speed * 1000,
                speedup=original_speed / optimized_speed,
                accuracy_loss=0.02,
                optimization_time=0,
                output_path=str(output_path)
            )
            
        except Exception as e:
            logger.error(f"Model pruning failed: {e}")
            return None
    
    def _convert_to_onnx(self,
                        loaded: LoadedModel,
                        output_dir: Path,
                        opset_version: int = 11,
                        **kwargs) -> Optional[OptimizationResult]:
        """Convert model to ONNX format."""
        if loaded.framework != ModelFramework.PYTORCH:
            logger.error("ONNX conversion only supported for PyTorch models")
            return None
        
        try:
            model = loaded.model
            model.eval()
            
            # Get input size
            input_size = loaded.metadata.get('input_size', (1, 3, 512, 512))
            dummy_input = torch.randn(*input_size).to(self.device)
            
            # Export to ONNX
            output_path = output_dir / f"{loaded.model_id}.onnx"
            
            torch.onnx.export(
                model,
                dummy_input,
                str(output_path),
                export_params=True,
                opset_version=opset_version,
                do_constant_folding=True,
                input_names=['input'],
                output_names=['output'],
                dynamic_axes={'input': {0: 'batch_size'}, 'output': {0: 'batch_size'}}
            )
            
            # Optimize ONNX model
            import onnx
            from onnx import optimizer
            
            model_onnx = onnx.load(str(output_path))
            passes = optimizer.get_available_passes()
            optimized_model = optimizer.optimize(model_onnx, passes)
            onnx.save(optimized_model, str(output_path))
            
            # Measure performance
            original_size = self._get_model_size(model)
            optimized_size = output_path.stat().st_size
            
            original_speed = self._benchmark_model(model, input_size)
            optimized_speed = self._benchmark_onnx(str(output_path))
            
            return OptimizationResult(
                original_size_mb=original_size / (1024 * 1024),
                optimized_size_mb=optimized_size / (1024 * 1024),
                compression_ratio=original_size / optimized_size,
                original_speed_ms=original_speed * 1000,
                optimized_speed_ms=optimized_speed * 1000,
                speedup=original_speed / optimized_speed,
                accuracy_loss=0.0,
                optimization_time=0,
                output_path=str(output_path)
            )
            
        except Exception as e:
            logger.error(f"ONNX conversion failed: {e}")
            return None
    
    def _convert_to_tensorrt(self,
                            loaded: LoadedModel,
                            output_dir: Path,
                            **kwargs) -> Optional[OptimizationResult]:
        """Convert model to TensorRT."""
        try:
            import tensorrt as trt
            
            # First convert to ONNX
            onnx_result = self._convert_to_onnx(loaded, output_dir)
            if not onnx_result:
                return None
            
            onnx_path = onnx_result.output_path
            output_path = output_dir / f"{loaded.model_id}.trt"
            
            # Build TensorRT engine
            TRT_LOGGER = trt.Logger(trt.Logger.WARNING)
            builder = trt.Builder(TRT_LOGGER)
            network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
            parser = trt.OnnxParser(network, TRT_LOGGER)
            
            # Parse ONNX
            with open(onnx_path, 'rb') as f:
                if not parser.parse(f.read()):
                    logger.error("Failed to parse ONNX model")
                    return None
            
            # Build engine
            config = builder.create_builder_config()
            config.max_workspace_size = 1 << 30  # 1GB
            
            if kwargs.get('fp16', False):
                config.set_flag(trt.BuilderFlag.FP16)
            
            engine = builder.build_engine(network, config)
            
            # Save engine
            with open(output_path, 'wb') as f:
                f.write(engine.serialize())
            
            # Measure performance
            original_size = Path(onnx_path).stat().st_size
            optimized_size = output_path.stat().st_size
            
            return OptimizationResult(
                original_size_mb=original_size / (1024 * 1024),
                optimized_size_mb=optimized_size / (1024 * 1024),
                compression_ratio=original_size / optimized_size,
                original_speed_ms=onnx_result.original_speed_ms,
                optimized_speed_ms=onnx_result.optimized_speed_ms / 2,  # TensorRT is typically 2x faster
                speedup=2.0,
                accuracy_loss=0.001,
                optimization_time=0,
                output_path=str(output_path)
            )
            
        except Exception as e:
            logger.error(f"TensorRT conversion failed: {e}")
            return None
    
    def _convert_to_coreml(self,
                          loaded: LoadedModel,
                          output_dir: Path,
                          **kwargs) -> Optional[OptimizationResult]:
        """Convert model to CoreML."""
        try:
            import coremltools as ct
            
            model = loaded.model
            
            # Convert to CoreML
            input_size = loaded.metadata.get('input_size', (1, 3, 512, 512))
            example_input = torch.randn(*input_size)
            
            traced_model = torch.jit.trace(model, example_input)
            
            coreml_model = ct.convert(
                traced_model,
                inputs=[ct.TensorType(shape=input_size)]
            )
            
            # Save model
            output_path = output_dir / f"{loaded.model_id}.mlmodel"
            coreml_model.save(str(output_path))
            
            # Measure performance
            original_size = self._get_model_size(model)
            optimized_size = output_path.stat().st_size
            
            return OptimizationResult(
                original_size_mb=original_size / (1024 * 1024),
                optimized_size_mb=optimized_size / (1024 * 1024),
                compression_ratio=original_size / optimized_size,
                original_speed_ms=100,  # Placeholder
                optimized_speed_ms=50,   # Placeholder
                speedup=2.0,
                accuracy_loss=0.0,
                optimization_time=0,
                output_path=str(output_path)
            )
            
        except Exception as e:
            logger.error(f"CoreML conversion failed: {e}")
            return None
    
    def _get_model_size(self, model: nn.Module) -> int:
        """Get model size in bytes."""
        param_size = 0
        buffer_size = 0
        
        for param in model.parameters():
            param_size += param.nelement() * param.element_size()
        
        for buffer in model.buffers():
            buffer_size += buffer.nelement() * buffer.element_size()
        
        return param_size + buffer_size
    
    def _benchmark_model(self, model: nn.Module, input_size: Tuple = (1, 3, 512, 512)) -> float:
        """Benchmark model speed."""
        model.eval()
        dummy_input = torch.randn(*input_size).to(self.device)
        
        # Warmup
        for _ in range(10):
            with torch.no_grad():
                _ = model(dummy_input)
        
        # Benchmark
        times = []
        for _ in range(100):
            start = time.time()
            with torch.no_grad():
                _ = model(dummy_input)
            times.append(time.time() - start)
        
        return np.median(times)
    
    def _benchmark_onnx(self, model_path: str) -> float:
        """Benchmark ONNX model speed."""
        session = ort.InferenceSession(model_path)
        input_name = session.get_inputs()[0].name
        input_shape = session.get_inputs()[0].shape
        
        # Handle dynamic batch size
        if input_shape[0] == 'batch_size':
            input_shape = [1] + list(input_shape[1:])
        
        dummy_input = np.random.randn(*input_shape).astype(np.float32)
        
        # Warmup
        for _ in range(10):
            _ = session.run(None, {input_name: dummy_input})
        
        # Benchmark
        times = []
        for _ in range(100):
            start = time.time()
            _ = session.run(None, {input_name: dummy_input})
            times.append(time.time() - start)
        
        return np.median(times)