File size: 12,717 Bytes
941297d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
# models/wrappers/matanyone_wrapper.py
import torch
import torch.nn.functional as F
from typing import Optional, Dict, Any, Tuple, Union
import numpy as np
class MatAnyOneWrapper:
def __init__(self, core, device=None, config=None):
"""
Initialize MatAnyone wrapper with enhanced configuration.
Args:
core: MatAnyone InferenceCore instance
device: torch device (auto-detect if None)
config: Optional configuration dict for processing parameters
"""
self.core = core
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
self.config = config or {}
# Default processing parameters
self.threshold = self.config.get('threshold', 0.5)
self.edge_refinement = self.config.get('edge_refinement', True)
self.hair_refinement = self.config.get('hair_refinement', True)
# Component weights for multi-layer processing
self.component_weights = self.config.get('component_weights', {
'base': 1.0,
'hair': 1.2,
'edge': 1.5,
'detail': 1.1
})
# Initialize model
try:
self.core.model.to(self.device)
except Exception:
pass
try:
self.core.model.eval()
except Exception:
pass
@torch.inference_mode()
def step(self,
image_tensor: torch.Tensor,
mask_tensor: Optional[torch.Tensor] = None,
objects: Optional[Dict] = None,
first_frame_pred: bool = False,
components: Optional[Dict[str, torch.Tensor]] = None,
**kwargs) -> torch.Tensor:
"""
Process a single frame with optional component masks.
Args:
image_tensor: (1,3,H,W) float32 [0..1] on self.device
mask_tensor: (1,1,H,W) float32 [0..1] on self.device
objects: Optional object tracking info
first_frame_pred: Whether this is the first frame
components: Optional dict with keys like 'hair', 'edge', 'detail'
Each value is a (1,1,H,W) tensor
**kwargs: Additional arguments for InferenceCore
Returns:
(1,1,H,W) float32 probabilities in [0..1]
"""
# Ensure everything is on the correct device
image_tensor = image_tensor.to(self.device, non_blocking=True)
if mask_tensor is not None:
mask_tensor = mask_tensor.to(self.device, non_blocking=True)
# Process component masks if provided
if components:
components = {
k: v.to(self.device, non_blocking=True)
for k, v in components.items()
}
# Main inference call
try:
# Adapt to actual InferenceCore API
out = self.core.step(
image_tensor=image_tensor,
mask_tensor=mask_tensor,
first_frame_pred=first_frame_pred,
objects=objects,
**kwargs
)
except TypeError:
# Fallback for different API signatures
out = self.core.step(
frame=image_tensor,
mask=mask_tensor,
**kwargs
)
# Normalize output shape
out = self._normalize_output(out)
# Apply component-based refinement if available
if components:
out = self._refine_with_components(out, components)
# Apply edge refinement if enabled
if self.edge_refinement and mask_tensor is not None:
out = self._refine_edges(out, image_tensor, mask_tensor)
return out.clamp_(0, 1)
def _normalize_output(self, out: Union[torch.Tensor, np.ndarray]) -> torch.Tensor:
"""Normalize output to (1,1,H,W) tensor."""
if isinstance(out, torch.Tensor):
if out.ndim == 3: # (1,H,W) → (1,1,H,W)
out = out.unsqueeze(1)
elif out.ndim == 2: # (H,W) → (1,1,H,W)
out = out.unsqueeze(0).unsqueeze(0)
else:
out = torch.as_tensor(out, dtype=torch.float32, device=self.device)
if out.ndim == 2:
out = out.unsqueeze(0).unsqueeze(0)
elif out.ndim == 3:
out = out.unsqueeze(1)
return out
def _refine_with_components(self,
base_mask: torch.Tensor,
components: Dict[str, torch.Tensor]) -> torch.Tensor:
"""
Refine mask using component layers (hair, edge, etc).
Args:
base_mask: (1,1,H,W) base alpha mask
components: Dict of component masks
Returns:
Refined (1,1,H,W) mask
"""
refined = base_mask.clone()
# Apply hair refinement
if 'hair' in components and self.hair_refinement:
hair_mask = components['hair']
weight = self.component_weights.get('hair', 1.0)
# Enhance hair regions
refined = torch.where(
hair_mask > 0.1,
torch.maximum(refined, hair_mask * weight),
refined
)
# Apply edge refinement
if 'edge' in components:
edge_mask = components['edge']
weight = self.component_weights.get('edge', 1.0)
# Sharpen edges
refined = self._apply_edge_enhancement(refined, edge_mask, weight)
# Apply detail mask if available
if 'detail' in components:
detail_mask = components['detail']
weight = self.component_weights.get('detail', 1.0)
refined = refined * (1 - detail_mask) + detail_mask * weight
return refined.clamp_(0, 1)
def _refine_edges(self,
mask: torch.Tensor,
image: torch.Tensor,
reference_mask: torch.Tensor) -> torch.Tensor:
"""
Apply edge refinement using image gradients.
Args:
mask: (1,1,H,W) mask to refine
image: (1,3,H,W) source image
reference_mask: (1,1,H,W) reference mask
Returns:
Edge-refined mask
"""
# Compute image gradients for edge detection
gray = image.mean(dim=1, keepdim=True)
# Sobel filters for edge detection
sobel_x = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]],
dtype=torch.float32, device=self.device)
sobel_y = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]],
dtype=torch.float32, device=self.device)
sobel_x = sobel_x.view(1, 1, 3, 3)
sobel_y = sobel_y.view(1, 1, 3, 3)
# Apply Sobel filters
edge_x = F.conv2d(gray, sobel_x, padding=1)
edge_y = F.conv2d(gray, sobel_y, padding=1)
edges = torch.sqrt(edge_x**2 + edge_y**2)
# Normalize edges
edges = edges / (edges.max() + 1e-7)
# Apply edge-aware smoothing
kernel_size = 3
refined = F.avg_pool2d(mask, kernel_size, stride=1, padding=1)
# Blend based on edge strength
alpha = 1 - edges * 0.5
refined = mask * alpha + refined * (1 - alpha)
return refined.clamp_(0, 1)
def _apply_edge_enhancement(self,
mask: torch.Tensor,
edge_mask: torch.Tensor,
weight: float) -> torch.Tensor:
"""Apply edge enhancement using edge mask."""
# Dilate edges slightly for smoother boundaries
kernel = torch.ones(1, 1, 3, 3, device=self.device) / 9
dilated_edges = F.conv2d(edge_mask, kernel, padding=1)
# Enhance edges
enhanced = torch.where(
dilated_edges > 0.1,
torch.maximum(mask, dilated_edges * weight),
mask
)
return enhanced
def process_batch(self,
images: torch.Tensor,
masks: Optional[torch.Tensor] = None,
components_batch: Optional[Dict[str, torch.Tensor]] = None,
**kwargs) -> torch.Tensor:
"""
Process a batch of frames.
Args:
images: (B,3,H,W) batch of images
masks: Optional (B,1,H,W) batch of masks
components_batch: Optional dict of component batches
**kwargs: Additional arguments
Returns:
(B,1,H,W) batch of refined masks
"""
batch_size = images.shape[0]
results = []
for i in range(batch_size):
image = images[i:i+1]
mask = masks[i:i+1] if masks is not None else None
# Extract components for this frame
components = None
if components_batch:
components = {
k: v[i:i+1] for k, v in components_batch.items()
}
# Process frame
result = self.step(
image,
mask,
components=components,
first_frame_pred=(i == 0),
**kwargs
)
results.append(result)
return torch.cat(results, dim=0)
def output_prob_to_mask(self, prob: Union[torch.Tensor, np.ndarray]) -> torch.Tensor:
"""Convert probability map to binary mask."""
if isinstance(prob, torch.Tensor):
return (prob > self.threshold).float()
t = torch.as_tensor(prob, device=self.device)
return (t > self.threshold).float()
def apply_morphology(self,
mask: torch.Tensor,
operation: str = 'close',
kernel_size: int = 5) -> torch.Tensor:
"""
Apply morphological operations to clean up mask.
Args:
mask: Binary mask tensor
operation: 'close', 'open', 'dilate', or 'erode'
kernel_size: Size of morphological kernel
Returns:
Processed mask
"""
kernel = torch.ones(1, 1, kernel_size, kernel_size, device=self.device)
if operation in ['close', 'dilate']:
# Dilation
mask = F.conv2d(mask, kernel, padding=kernel_size//2)
mask = (mask > 0).float()
if operation in ['close', 'erode']:
# Erosion
mask = F.conv2d(mask, kernel, padding=kernel_size//2)
mask = (mask >= kernel_size**2).float()
if operation == 'open':
# Erosion followed by dilation
mask = F.conv2d(mask, kernel, padding=kernel_size//2)
mask = (mask >= kernel_size**2).float()
mask = F.conv2d(mask, kernel, padding=kernel_size//2)
mask = (mask > 0).float()
return mask
def get_alpha_matte(self,
image: torch.Tensor,
mask: torch.Tensor,
trimap: Optional[torch.Tensor] = None) -> torch.Tensor:
"""
Get alpha matte with optional trimap refinement.
Args:
image: (1,3,H,W) RGB image
mask: (1,1,H,W) initial mask
trimap: Optional (1,1,H,W) trimap (0=bg, 0.5=unknown, 1=fg)
Returns:
(1,1,H,W) refined alpha matte
"""
# Process through MatAnyone
alpha = self.step(image, mask)
# Apply trimap constraints if provided
if trimap is not None:
alpha = torch.where(trimap == 0, torch.zeros_like(alpha), alpha)
alpha = torch.where(trimap == 1, torch.ones_like(alpha), alpha)
return alpha
def composite(self,
foreground: torch.Tensor,
background: torch.Tensor,
alpha: torch.Tensor) -> torch.Tensor:
"""
Composite foreground over background using alpha.
Args:
foreground: (1,3,H,W) foreground image
background: (1,3,H,W) background image
alpha: (1,1,H,W) alpha matte
Returns:
(1,3,H,W) composited image
"""
return foreground * alpha + background * (1 - alpha) |