File size: 17,292 Bytes
ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f 061fd49 ca3b25f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
"""
BackgroundFX Pro Configuration Module
Centralizes all application configuration and environment variable handling
Note: Named 'app_config.py' to avoid conflicts with existing 'Configs/' folder
"""
import os
from dataclasses import dataclass, asdict, field
from typing import Dict, Any, Optional, List
from pathlib import Path
import logging
import json
import yaml
logger = logging.getLogger(__name__)
@dataclass
class ProcessingConfig:
"""
Main processing configuration with environment variable defaults
"""
# Application info
app_name: str = "BackgroundFX Pro"
version: str = "2.0.0"
# Frame processing settings
keyframe_interval: int = int(os.getenv('KEYFRAME_INTERVAL', '5'))
frame_skip: int = int(os.getenv('FRAME_SKIP', '1'))
# Memory management
memory_cleanup_interval: int = int(os.getenv('MEMORY_CLEANUP_INTERVAL', '30'))
memory_threshold_mb: int = int(os.getenv('MEMORY_THRESHOLD_MB', '1024'))
# Video constraints
max_video_length: int = int(os.getenv('MAX_VIDEO_LENGTH', '300')) # seconds
max_video_resolution: str = os.getenv('MAX_VIDEO_RESOLUTION', '1920x1080')
min_video_fps: int = int(os.getenv('MIN_VIDEO_FPS', '15'))
max_video_fps: int = int(os.getenv('MAX_VIDEO_FPS', '60'))
# Quality settings
quality_preset: str = os.getenv('QUALITY_PRESET', 'balanced')
# Model settings
sam2_model_size: str = os.getenv('SAM2_MODEL_SIZE', 'large') # tiny, small, base, large
matanyone_precision: str = os.getenv('MATANYONE_PRECISION', 'fp32') # fp16, fp32
model_device: str = os.getenv('MODEL_DEVICE', 'auto') # auto, cuda, cpu
# Processing settings
temporal_consistency: bool = os.getenv('TEMPORAL_CONSISTENCY', 'true').lower() == 'true'
edge_refinement: bool = os.getenv('EDGE_REFINEMENT', 'true').lower() == 'true'
mask_blur_radius: int = int(os.getenv('MASK_BLUR_RADIUS', '5'))
confidence_threshold: float = float(os.getenv('CONFIDENCE_THRESHOLD', '0.85'))
# Output settings
output_dir: str = os.getenv('OUTPUT_DIR', 'outputs')
output_format: str = os.getenv('OUTPUT_FORMAT', 'mp4')
output_quality: str = os.getenv('OUTPUT_QUALITY', 'high') # low, medium, high
output_codec: str = os.getenv('OUTPUT_CODEC', 'h264')
preserve_audio: bool = os.getenv('PRESERVE_AUDIO', 'true').lower() == 'true'
# Cache settings
model_cache_dir: str = os.getenv('MODEL_CACHE_DIR', 'models/cache')
temp_dir: str = os.getenv('TEMP_DIR', 'temp')
cleanup_temp_files: bool = os.getenv('CLEANUP_TEMP_FILES', 'true').lower() == 'true'
cache_size_limit_gb: float = float(os.getenv('CACHE_SIZE_LIMIT_GB', '10.0'))
# Performance settings
max_concurrent_processes: int = int(os.getenv('MAX_CONCURRENT_PROCESSES', '1'))
gpu_memory_fraction: float = float(os.getenv('GPU_MEMORY_FRACTION', '0.8'))
batch_size: int = int(os.getenv('BATCH_SIZE', '4'))
num_workers: int = int(os.getenv('NUM_WORKERS', '4'))
# API settings
api_enabled: bool = os.getenv('API_ENABLED', 'false').lower() == 'true'
api_host: str = os.getenv('API_HOST', '0.0.0.0')
api_port: int = int(os.getenv('API_PORT', '8000'))
api_key: Optional[str] = os.getenv('API_KEY', None)
# Web UI settings
gradio_server_name: str = os.getenv('GRADIO_SERVER_NAME', '0.0.0.0')
gradio_server_port: int = int(os.getenv('GRADIO_SERVER_PORT', '7860'))
gradio_share: bool = os.getenv('GRADIO_SHARE', 'false').lower() == 'true'
gradio_auth: Optional[str] = os.getenv('GRADIO_AUTH', None) # username:password
# Debug settings
debug_mode: bool = os.getenv('DEBUG_MODE', 'false').lower() == 'true'
save_intermediate_results: bool = os.getenv('SAVE_INTERMEDIATE_RESULTS', 'false').lower() == 'true'
log_level: str = os.getenv('LOG_LEVEL', 'INFO')
profile_performance: bool = os.getenv('PROFILE_PERFORMANCE', 'false').lower() == 'true'
# Feature flags
enable_two_stage: bool = os.getenv('ENABLE_TWO_STAGE', 'true').lower() == 'true'
enable_preview_modes: bool = os.getenv('ENABLE_PREVIEW_MODES', 'true').lower() == 'true'
enable_batch_processing: bool = os.getenv('ENABLE_BATCH_PROCESSING', 'false').lower() == 'true'
# Legacy compatibility
legacy_mode: bool = os.getenv('LEGACY_MODE', 'true').lower() == 'true'
legacy_configs_dir: str = os.getenv('LEGACY_CONFIGS_DIR', 'Configs')
def __post_init__(self):
"""Validate configuration after initialization"""
self._validate_config()
self._create_directories()
self._setup_logging()
if self.debug_mode:
self._log_config()
def _validate_config(self):
"""Validate configuration values"""
# Validate frame settings
self.keyframe_interval = max(1, self.keyframe_interval)
self.frame_skip = max(1, self.frame_skip)
# Validate memory settings
self.memory_cleanup_interval = max(1, self.memory_cleanup_interval)
self.memory_threshold_mb = max(256, self.memory_threshold_mb)
# Validate video constraints
self.max_video_length = max(1, self.max_video_length)
self.min_video_fps = max(1, min(self.min_video_fps, 60))
self.max_video_fps = max(self.min_video_fps, min(self.max_video_fps, 120))
# Validate resolution format
if 'x' not in self.max_video_resolution:
logger.warning(f"Invalid resolution format: {self.max_video_resolution}. Setting to 1920x1080.")
self.max_video_resolution = '1920x1080'
# Validate quality preset
valid_presets = ['fast', 'balanced', 'high', 'ultra']
if self.quality_preset not in valid_presets:
logger.warning(f"Invalid quality preset: {self.quality_preset}. Setting to 'balanced'.")
self.quality_preset = 'balanced'
# Validate model settings
valid_sam2_sizes = ['tiny', 'small', 'base', 'large']
if self.sam2_model_size not in valid_sam2_sizes:
logger.warning(f"Invalid SAM2 model size: {self.sam2_model_size}. Setting to 'large'.")
self.sam2_model_size = 'large'
valid_precisions = ['fp16', 'fp32']
if self.matanyone_precision not in valid_precisions:
logger.warning(f"Invalid precision: {self.matanyone_precision}. Setting to 'fp32'.")
self.matanyone_precision = 'fp32'
# Validate output settings
valid_formats = ['mp4', 'avi', 'mov', 'webm', 'mkv']
if self.output_format not in valid_formats:
logger.warning(f"Invalid output format: {self.output_format}. Setting to 'mp4'.")
self.output_format = 'mp4'
valid_qualities = ['low', 'medium', 'high', 'ultra']
if self.output_quality not in valid_qualities:
logger.warning(f"Invalid output quality: {self.output_quality}. Setting to 'high'.")
self.output_quality = 'high'
# Validate performance settings
self.max_concurrent_processes = max(1, self.max_concurrent_processes)
self.gpu_memory_fraction = max(0.1, min(1.0, self.gpu_memory_fraction))
self.batch_size = max(1, self.batch_size)
self.num_workers = max(0, self.num_workers)
# Validate API settings
self.api_port = max(1024, min(65535, self.api_port))
# Validate confidence threshold
self.confidence_threshold = max(0.0, min(1.0, self.confidence_threshold))
# Validate cache size
self.cache_size_limit_gb = max(0.1, self.cache_size_limit_gb)
def _create_directories(self):
"""Create necessary directories if they don't exist"""
directories = [
self.model_cache_dir,
self.temp_dir,
self.output_dir,
Path(self.output_dir) / 'masks',
Path(self.output_dir) / 'greenscreen',
Path(self.output_dir) / 'final',
Path(self.output_dir) / 'two_stage'
]
for directory in directories:
try:
Path(directory).mkdir(parents=True, exist_ok=True)
logger.debug(f"Ensured directory exists: {directory}")
except Exception as e:
logger.error(f"Failed to create directory {directory}: {e}")
def _setup_logging(self):
"""Setup logging based on configuration"""
log_levels = {
'DEBUG': logging.DEBUG,
'INFO': logging.INFO,
'WARNING': logging.WARNING,
'ERROR': logging.ERROR,
'CRITICAL': logging.CRITICAL
}
level = log_levels.get(self.log_level.upper(), logging.INFO)
logging.getLogger().setLevel(level)
def _log_config(self):
"""Log current configuration in debug mode"""
logger.info("=" * 60)
logger.info(f"{self.app_name} v{self.version} Configuration")
logger.info("=" * 60)
config_dict = self.to_dict()
# Hide sensitive information
if config_dict.get('api_key'):
config_dict['api_key'] = '***hidden***'
if config_dict.get('gradio_auth'):
config_dict['gradio_auth'] = '***hidden***'
for key, value in config_dict.items():
logger.info(f"{key}: {value}")
logger.info("=" * 60)
def to_dict(self) -> Dict[str, Any]:
"""Convert configuration to dictionary"""
return asdict(self)
def to_json(self, filepath: Optional[str] = None) -> str:
"""Export configuration to JSON"""
config_dict = self.to_dict()
if filepath:
with open(filepath, 'w') as f:
json.dump(config_dict, f, indent=2)
logger.info(f"Configuration saved to {filepath}")
return json.dumps(config_dict, indent=2)
def to_yaml(self, filepath: Optional[str] = None) -> str:
"""Export configuration to YAML"""
config_dict = self.to_dict()
if filepath:
with open(filepath, 'w') as f:
yaml.dump(config_dict, f, default_flow_style=False)
logger.info(f"Configuration saved to {filepath}")
return yaml.dump(config_dict, default_flow_style=False)
@classmethod
def from_json(cls, filepath: str) -> 'ProcessingConfig':
"""Load configuration from JSON file"""
with open(filepath, 'r') as f:
config_dict = json.load(f)
return cls(**config_dict)
@classmethod
def from_yaml(cls, filepath: str) -> 'ProcessingConfig':
"""Load configuration from YAML file"""
with open(filepath, 'r') as f:
config_dict = yaml.safe_load(f)
return cls(**config_dict)
def get_quality_settings(self) -> Dict[str, Any]:
"""Get quality-specific settings based on preset"""
quality_maps = {
'fast': {
'keyframe_interval': max(self.keyframe_interval, 10),
'frame_skip': max(self.frame_skip, 2),
'edge_refinement': False,
'temporal_consistency': False,
'model_precision': 'fp16',
'batch_size': min(self.batch_size * 2, 16),
'output_quality_params': '-preset ultrafast -crf 28'
},
'balanced': {
'keyframe_interval': self.keyframe_interval,
'frame_skip': self.frame_skip,
'edge_refinement': True,
'temporal_consistency': True,
'model_precision': 'fp32',
'batch_size': self.batch_size,
'output_quality_params': '-preset medium -crf 23'
},
'high': {
'keyframe_interval': max(self.keyframe_interval // 2, 1),
'frame_skip': 1,
'edge_refinement': True,
'temporal_consistency': True,
'model_precision': 'fp32',
'batch_size': max(self.batch_size // 2, 1),
'output_quality_params': '-preset slow -crf 18'
},
'ultra': {
'keyframe_interval': 1,
'frame_skip': 1,
'edge_refinement': True,
'temporal_consistency': True,
'model_precision': 'fp32',
'batch_size': 1,
'output_quality_params': '-preset veryslow -crf 15'
}
}
return quality_maps.get(self.quality_preset, quality_maps['balanced'])
def get_resolution_limits(self) -> tuple[int, int]:
"""Get max width and height from resolution setting"""
try:
width, height = map(int, self.max_video_resolution.split('x'))
return width, height
except ValueError:
logger.error(f"Invalid resolution format: {self.max_video_resolution}")
return 1920, 1080
def get_output_params(self) -> Dict[str, str]:
"""Get FFmpeg output parameters based on settings"""
quality_settings = self.get_quality_settings()
codec_map = {
'h264': 'libx264',
'h265': 'libx265',
'vp9': 'libvpx-vp9',
'av1': 'libaom-av1'
}
return {
'codec': codec_map.get(self.output_codec, 'libx264'),
'quality': quality_settings['output_quality_params'],
'format': self.output_format,
'audio': '-c:a copy' if self.preserve_audio else '-an'
}
def is_high_performance_mode(self) -> bool:
"""Check if configuration is set for high performance"""
return (
self.quality_preset in ['high', 'ultra'] and
self.edge_refinement and
self.temporal_consistency and
self.keyframe_interval <= 3
)
def get_memory_limits(self) -> Dict[str, Any]:
"""Get memory-related limits"""
return {
'gpu_memory_fraction': self.gpu_memory_fraction,
'cleanup_interval': self.memory_cleanup_interval,
'max_concurrent': self.max_concurrent_processes,
'threshold_mb': self.memory_threshold_mb,
'cache_size_gb': self.cache_size_limit_gb
}
def validate_for_production(self) -> List[str]:
"""Validate configuration for production deployment"""
warnings = []
if self.debug_mode:
warnings.append("Debug mode is enabled in production")
if self.save_intermediate_results:
warnings.append("Intermediate results saving is enabled (disk usage)")
if not self.cleanup_temp_files:
warnings.append("Temp file cleanup is disabled (disk usage)")
if self.gradio_share:
warnings.append("Gradio share is enabled (security risk)")
if not self.api_key and self.api_enabled:
warnings.append("API is enabled without authentication")
if self.gpu_memory_fraction > 0.9:
warnings.append("GPU memory fraction is very high (>90%)")
if self.max_concurrent_processes > 4:
warnings.append("High concurrent processes may cause instability")
return warnings
# Singleton instance for application-wide use
_config_instance: Optional[ProcessingConfig] = None
def get_config() -> ProcessingConfig:
"""Get global configuration instance"""
global _config_instance
if _config_instance is None:
_config_instance = ProcessingConfig()
return _config_instance
def reload_config() -> ProcessingConfig:
"""Reload configuration from environment variables"""
global _config_instance
_config_instance = ProcessingConfig()
logger.info("Configuration reloaded from environment variables")
return _config_instance
def update_config(**kwargs) -> ProcessingConfig:
"""Update configuration with new values"""
global _config_instance
if _config_instance is None:
_config_instance = ProcessingConfig()
for key, value in kwargs.items():
if hasattr(_config_instance, key):
setattr(_config_instance, key, value)
logger.debug(f"Updated config: {key} = {value}")
else:
logger.warning(f"Unknown configuration key: {key}")
# Re-validate after updates
_config_instance._validate_config()
return _config_instance
def load_config_from_file(filepath: str) -> ProcessingConfig:
"""Load configuration from file (JSON or YAML)"""
global _config_instance
file_path = Path(filepath)
if not file_path.exists():
raise FileNotFoundError(f"Configuration file not found: {filepath}")
if file_path.suffix.lower() in ['.json']:
_config_instance = ProcessingConfig.from_json(filepath)
elif file_path.suffix.lower() in ['.yaml', '.yml']:
_config_instance = ProcessingConfig.from_yaml(filepath)
else:
raise ValueError(f"Unsupported configuration file format: {file_path.suffix}")
logger.info(f"Configuration loaded from {filepath}")
return _config_instance |