File size: 19,186 Bytes
d51bd78
9015f7f
 
 
 
 
 
d51bd78
 
9015f7f
d51bd78
 
9015f7f
d51bd78
9015f7f
 
d51bd78
 
 
 
 
9015f7f
 
 
d51bd78
 
 
 
9015f7f
 
 
 
d51bd78
9015f7f
 
 
 
 
 
 
 
 
 
 
 
 
 
d51bd78
9015f7f
d51bd78
9015f7f
d51bd78
 
 
9015f7f
 
d51bd78
9015f7f
 
d51bd78
9015f7f
 
 
d51bd78
9015f7f
 
 
 
 
 
d51bd78
9015f7f
 
 
 
 
d51bd78
 
 
9015f7f
d51bd78
 
 
 
9015f7f
 
 
d51bd78
9015f7f
 
d51bd78
9015f7f
 
 
d51bd78
 
 
 
9015f7f
 
d51bd78
9015f7f
 
 
d51bd78
9015f7f
 
d51bd78
9015f7f
 
 
 
d51bd78
9015f7f
 
 
 
 
d51bd78
 
 
 
 
9015f7f
d51bd78
 
9015f7f
d51bd78
 
9015f7f
 
d51bd78
9015f7f
 
d51bd78
9015f7f
 
 
d51bd78
9015f7f
d51bd78
 
9015f7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d51bd78
9015f7f
d51bd78
9015f7f
 
 
 
d51bd78
 
 
 
 
 
9015f7f
 
d51bd78
 
 
9015f7f
d51bd78
9015f7f
 
d51bd78
 
 
9015f7f
 
d51bd78
9015f7f
 
 
d51bd78
9015f7f
 
d51bd78
9015f7f
d51bd78
9015f7f
d51bd78
 
 
 
9015f7f
 
 
 
 
d51bd78
 
 
 
 
9015f7f
 
 
 
d51bd78
 
 
 
 
9015f7f
d51bd78
 
9015f7f
 
d51bd78
 
 
9015f7f
d51bd78
9015f7f
 
d51bd78
9015f7f
 
 
d51bd78
9015f7f
d51bd78
9015f7f
d51bd78
 
 
9015f7f
d51bd78
9015f7f
 
d51bd78
9015f7f
 
d51bd78
 
9015f7f
 
 
 
d51bd78
 
9015f7f
 
 
 
 
d51bd78
 
9015f7f
 
 
d51bd78
9015f7f
 
 
 
d51bd78
9015f7f
 
d51bd78
9015f7f
 
 
 
 
 
 
d51bd78
9015f7f
 
 
d51bd78
 
9015f7f
 
 
 
 
d51bd78
9015f7f
 
 
d51bd78
 
9015f7f
 
 
 
 
 
d51bd78
9015f7f
d51bd78
9015f7f
d51bd78
9015f7f
 
 
d51bd78
9015f7f
d51bd78
9015f7f
 
d51bd78
 
9015f7f
 
 
 
 
 
d51bd78
 
 
 
9015f7f
 
d51bd78
9015f7f
 
 
 
 
d51bd78
9015f7f
 
 
 
d51bd78
9015f7f
 
 
d51bd78
9015f7f
d51bd78
9015f7f
d51bd78
9015f7f
 
d51bd78
9015f7f
 
d51bd78
9015f7f
 
 
d51bd78
9015f7f
 
 
 
d51bd78
 
9015f7f
d51bd78
9015f7f
d51bd78
9015f7f
 
d51bd78
 
 
 
9015f7f
d51bd78
9015f7f
d51bd78
 
 
 
 
 
 
 
9015f7f
 
 
d51bd78
 
 
 
9015f7f
 
d51bd78
9015f7f
 
 
 
 
 
 
 
d51bd78
9015f7f
d51bd78
9015f7f
 
 
 
 
 
d51bd78
9015f7f
d51bd78
 
9015f7f
 
d51bd78
 
 
 
9015f7f
 
d51bd78
 
 
 
 
9015f7f
 
d51bd78
 
 
 
9015f7f
 
d51bd78
9015f7f
 
 
d51bd78
 
9015f7f
 
d51bd78
9015f7f
 
 
 
 
 
d51bd78
 
 
9015f7f
 
 
d51bd78
 
 
9015f7f
 
 
d51bd78
 
 
9015f7f
 
d51bd78
9015f7f
 
d51bd78
9015f7f
d51bd78
9015f7f
d51bd78
9015f7f
d51bd78
 
 
9015f7f
 
d51bd78
9015f7f
 
 
 
 
 
 
 
d51bd78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9015f7f
d51bd78
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
#!/usr/bin/env python3
"""
Model management and optimization for BackgroundFX Pro.
Fixes MatAnyone quality issues and manages model loading.
"""

from dataclasses import dataclass
from enum import Enum
from functools import lru_cache
from pathlib import Path
from typing import Dict, Any, Optional, Tuple, List

import gc
import logging
import warnings

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

logger = logging.getLogger(__name__)


# -------------------------------
# Configuration & Caching
# -------------------------------

@dataclass
class ModelConfig:
    """Configuration for model management."""
    sam2_checkpoint: str = "checkpoints/sam2_hiera_large.pt"
    sam2_config: str = "configs/sam2_hiera_l.yaml"  # path to SAM2 config file
    matanyone_checkpoint: str = "checkpoints/matanyone_v2.pth"
    device: str = "cuda"
    dtype: torch.dtype = torch.float16
    optimize_memory: bool = True
    use_amp: bool = True
    cache_size: int = 5
    enable_quality_fixes: bool = True
    matanyone_enhancement: bool = True
    use_tensorrt: bool = False
    batch_size: int = 1


class ModelCache:
    """Intelligent model caching system."""

    def __init__(self, max_size: int = 5):
        self.cache: Dict[str, Any] = {}
        self.max_size = max_size
        self.access_count: Dict[str, int] = {}
        self.memory_usage: Dict[str, float] = {}

    def add(self, key: str, model: Any, memory_size: float):
        """Add model to cache with memory tracking."""
        if len(self.cache) >= self.max_size and self.access_count:
            lru_key = min(self.access_count, key=self.access_count.get)
            self.remove(lru_key)

        self.cache[key] = model
        self.access_count[key] = 0
        self.memory_usage[key] = memory_size

    def get(self, key: str) -> Optional[Any]:
        """Get model from cache."""
        if key in self.cache:
            self.access_count[key] += 1
            return self.cache[key]
        return None

    def remove(self, key: str):
        """Remove model from cache and free memory."""
        if key in self.cache:
            model = self.cache[key]
            del self.cache[key]
            self.access_count.pop(key, None)
            self.memory_usage.pop(key, None)

            # Force cleanup
            try:
                del model
            except Exception:
                pass
            gc.collect()
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    def clear(self):
        """Clear entire cache."""
        for key in list(self.cache.keys()):
            self.remove(key)


# -------------------------------
# MatAnyone model (enhanced)
# -------------------------------

class MatAnyoneModel(nn.Module):
    """Enhanced MatAnyone model with quality fixes."""

    def __init__(self, config: ModelConfig):
        super().__init__()
        self.config = config
        self.base_model: Optional[nn.Module] = None
        self.quality_enhancer = QualityEnhancer() if config.enable_quality_fixes else None
        self.loaded = False

    def load(self):
        """Load MatAnyone model with optimizations."""
        if self.loaded:
            return

        try:
            checkpoint_path = Path(self.config.matanyone_checkpoint)
            if not checkpoint_path.exists():
                logger.warning(f"MatAnyone checkpoint not found at {checkpoint_path}")
                return

            # Load weights
            state_dict = torch.load(checkpoint_path, map_location=self.config.device)

            # Build model (placeholder architecture)
            self.base_model = self._build_matanyone_architecture()

            # Load filtered weights
            self._load_weights_safe(state_dict)

            # Optimize
            if self.config.optimize_memory:
                self._optimize_model()

            self.loaded = True
            logger.info("MatAnyone model loaded successfully")

        except Exception as e:
            logger.error(f"Failed to load MatAnyone model: {e}")
            self.loaded = False

    def _build_matanyone_architecture(self) -> nn.Module:
        """Build MatAnyone architecture (placeholder)."""

        class MatAnyoneBase(nn.Module):
            def __init__(self):
                super().__init__()
                self.encoder = nn.Sequential(
                    nn.Conv2d(4, 64, 3, padding=1),
                    nn.ReLU(),
                    nn.Conv2d(64, 128, 3, stride=2, padding=1),
                    nn.ReLU(),
                    nn.Conv2d(128, 256, 3, stride=2, padding=1),
                    nn.ReLU(),
                )
                self.decoder = nn.Sequential(
                    nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1),
                    nn.ReLU(),
                    nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1),
                    nn.ReLU(),
                    nn.Conv2d(64, 4, 3, padding=1),
                    nn.Sigmoid(),
                )

            def forward(self, x):
                features = self.encoder(x)
                output = self.decoder(features)
                return output

        model = MatAnyoneBase().to(self.config.device)
        if self.config.dtype == torch.float16 and "cuda" in str(self.config.device).lower() and torch.cuda.is_available():
            model = model.half()
        return model

    def _load_weights_safe(self, state_dict: Dict):
        """Safely load weights with compatibility handling."""
        if self.base_model is None:
            return

        model_dict = self.base_model.state_dict()

        compatible_dict = {}
        for k, v in state_dict.items():
            k_clean = k[7:] if k.startswith("module.") else k
            if k_clean in model_dict and model_dict[k_clean].shape == v.shape:
                compatible_dict[k_clean] = v
            else:
                logger.warning(f"Skipping incompatible weight: {k}")

        model_dict.update(compatible_dict)
        self.base_model.load_state_dict(model_dict, strict=False)
        logger.info(f"Loaded {len(compatible_dict)}/{len(state_dict)} weights")

    def _optimize_model(self):
        """Optimize model for inference."""
        if self.base_model is None:
            return

        self.base_model.eval()

        for p in self.base_model.parameters():
            p.requires_grad = False

        if self.config.use_tensorrt:
            try:
                self._optimize_with_tensorrt()
            except Exception as e:
                logger.warning(f"TensorRT optimization failed: {e}")

    def _optimize_with_tensorrt(self):
        """Placeholder for optional TensorRT optimization."""
        raise NotImplementedError("TensorRT path not implemented")

    def forward(self, image: torch.Tensor, mask: torch.Tensor) -> Dict[str, torch.Tensor]:
        """Enhanced forward pass with quality fixes."""
        if not self.loaded:
            self.load()

        if self.base_model is None:
            return {"alpha": mask.unsqueeze(1), "foreground": image, "confidence": torch.tensor([0.0], device=image.device)}

        # Concatenate image (3ch) + mask (1ch) => 4ch
        x = torch.cat([image, mask.unsqueeze(1)], dim=1)

        # Quality enhancements
        if self.config.matanyone_enhancement:
            x = self._preprocess_input(x)

        amp_enabled = self.config.use_amp and torch.cuda.is_available() and "cuda" in str(self.config.device).lower()
        with torch.cuda.amp.autocast(enabled=amp_enabled):
            output = self.base_model(x)

        alpha = output[:, 3:4, :, :]
        foreground = output[:, :3, :, :]

        if self.quality_enhancer:
            alpha = self.quality_enhancer.enhance_alpha(alpha, mask)
            foreground = self.quality_enhancer.enhance_foreground(foreground, image)

        alpha = self._fix_matanyone_artifacts(alpha, mask)

        return {
            "alpha": alpha,
            "foreground": foreground,
            "confidence": self._compute_confidence(alpha, mask),
        }

    def _preprocess_input(self, x: torch.Tensor) -> torch.Tensor:
        """Preprocess input to improve MatAnyone quality."""
        if x.shape[2] > 64:
            x = self._bilateral_filter_torch(x)
        x = torch.clamp(x, 0, 1)

        # Enhance mask edges (last channel)
        mask_channel = x[:, 3:4, :, :]
        mask_enhanced = self._enhance_mask_edges(mask_channel)
        x = torch.cat([x[:, :3, :, :], mask_enhanced], dim=1)
        return x

    def _fix_matanyone_artifacts(self, alpha: torch.Tensor, original_mask: torch.Tensor) -> torch.Tensor:
        """Fix common MatAnyone artifacts."""
        alpha = self._fix_edge_bleeding(alpha, original_mask)
        alpha = self._fix_transparency_issues(alpha)
        alpha = self._ensure_mask_consistency(alpha, original_mask)
        return alpha

    def _fix_edge_bleeding(self, alpha: torch.Tensor, original_mask: torch.Tensor) -> torch.Tensor:
        """Fix edge bleeding artifacts."""
        edges = self._detect_edges_torch(original_mask)
        edge_mask = F.max_pool2d(edges, kernel_size=5, stride=1, padding=2)

        alpha_refined = alpha.clone()
        edge_region = edge_mask > 0.1
        if edge_region.any():
            alpha_refined[edge_region] = (
                0.7 * alpha[edge_region] + 0.3 * original_mask.unsqueeze(1).expand_as(alpha)[edge_region]
            )
        return alpha_refined

    def _fix_transparency_issues(self, alpha: torch.Tensor) -> torch.Tensor:
        """Fix transparency artifacts."""
        mid_range = (alpha > 0.2) & (alpha < 0.8)
        alpha_fixed = alpha.clone()
        alpha_fixed[mid_range] = torch.where(
            alpha[mid_range] > 0.5,
            torch.clamp(alpha[mid_range] * 1.2, max=1.0),
            torch.clamp(alpha[mid_range] * 0.8, min=0.0),
        )
        alpha_fixed = F.gaussian_blur(alpha_fixed, kernel_size=(3, 3))
        return alpha_fixed

    def _ensure_mask_consistency(self, alpha: torch.Tensor, original_mask: torch.Tensor) -> torch.Tensor:
        """Ensure consistency with original mask."""
        if original_mask.dim() == 2:
            original_mask = original_mask.unsqueeze(0).unsqueeze(0)
        elif original_mask.dim() == 3:
            original_mask = original_mask.unsqueeze(1)

        alpha = torch.where(original_mask < 0.1, torch.zeros_like(alpha), alpha)
        alpha = torch.where(original_mask > 0.9, torch.ones_like(alpha) * 0.95, alpha)
        return alpha

    def _compute_confidence(self, alpha: torch.Tensor, original_mask: torch.Tensor) -> torch.Tensor:
        """Compute confidence score for the output."""
        if original_mask.dim() < alpha.dim():
            original_mask = original_mask.unsqueeze(1).expand_as(alpha)
        diff = torch.abs(alpha - original_mask)
        confidence = 1.0 - torch.mean(diff, dim=(1, 2, 3))
        return confidence

    def _bilateral_filter_torch(self, x: torch.Tensor) -> torch.Tensor:
        """Approximate bilateral filter via Gaussian blur."""
        return F.gaussian_blur(x, kernel_size=(5, 5))

    def _enhance_mask_edges(self, mask: torch.Tensor) -> torch.Tensor:
        """Enhance edges in mask channel."""
        edges = self._detect_edges_torch(mask)
        enhanced = torch.clamp(mask + 0.3 * edges, 0, 1)
        return enhanced

    def _detect_edges_torch(self, x: torch.Tensor) -> torch.Tensor:
        """Detect edges using Sobel filters."""
        sobel_x = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=x.dtype, device=x.device).view(1, 1, 3, 3)
        sobel_y = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype=x.dtype, device=x.device).view(1, 1, 3, 3)
        edges_x = F.conv2d(x, sobel_x, padding=1)
        edges_y = F.conv2d(x, sobel_y, padding=1)
        edges = torch.sqrt(edges_x ** 2 + edges_y ** 2)
        return edges


# -------------------------------
# SAM2 wrapper
# -------------------------------

class SAM2Model:
    """SAM2 model wrapper with optimizations."""

    def __init__(self, config: ModelConfig):
        self.config = config
        self.model = None
        self.predictor = None
        self.loaded = False

    def load(self):
        """Load SAM2 model."""
        if self.loaded:
            return

        try:
            from sam2.build_sam import build_sam2
            from sam2.sam2_image_predictor import SAM2ImagePredictor

            self.model = build_sam2(
                config_file=self.config.sam2_config,
                ckpt_path=self.config.sam2_checkpoint,
                device=self.config.device,
            )
            self.predictor = SAM2ImagePredictor(self.model)

            self.loaded = True
            logger.info("SAM2 model loaded successfully")

        except Exception as e:
            logger.error(f"Failed to load SAM2 model: {e}")
            self.loaded = False

    def predict(self, image: np.ndarray, prompts: Optional[Dict] = None) -> np.ndarray:
        """Generate segmentation mask."""
        if not self.loaded:
            self.load()

        if self.predictor is None:
            return np.zeros((image.shape[0], image.shape[1]), dtype=np.uint8)

        self.predictor.set_image(image)

        if prompts:
            masks, scores, _ = self.predictor.predict(
                point_coords=prompts.get("points"),
                point_labels=prompts.get("labels"),
                box=prompts.get("box"),
                multimask_output=True,
            )
            mask = masks[int(np.argmax(scores))]
        else:
            # Fallback automatic segmentation (API may differ by version)
            try:
                masks = self.predictor.generate_auto_masks(image)
                mask = masks[0] if len(masks) > 0 else np.zeros_like(image[:, :, 0])
            except Exception:
                # As a conservative fallback, return empty mask
                mask = np.zeros_like(image[:, :, 0])

        return mask


# -------------------------------
# Quality enhancer
# -------------------------------

class QualityEnhancer(nn.Module):
    """Neural quality enhancement module."""

    def __init__(self):
        super().__init__()
        self.alpha_refiner = nn.Sequential(
            nn.Conv2d(1, 16, 3, padding=1),
            nn.ReLU(),
            nn.Conv2d(16, 16, 3, padding=1),
            nn.ReLU(),
            nn.Conv2d(16, 1, 3, padding=1),
            nn.Sigmoid(),
        )

        self.foreground_enhancer = nn.Sequential(
            nn.Conv2d(3, 32, 3, padding=1),
            nn.ReLU(),
            nn.Conv2d(32, 32, 3, padding=1),
            nn.ReLU(),
            nn.Conv2d(32, 3, 3, padding=1),
            nn.Tanh(),
        )

    def enhance_alpha(self, alpha: torch.Tensor, original_mask: torch.Tensor) -> torch.Tensor:
        """Enhance alpha channel quality."""
        refined = self.alpha_refiner(alpha)
        enhanced = torch.clamp(0.7 * refined + 0.3 * alpha, 0, 1)
        return enhanced

    def enhance_foreground(self, foreground: torch.Tensor, original_image: torch.Tensor) -> torch.Tensor:
        """Enhance foreground quality."""
        residual = self.foreground_enhancer(foreground)
        enhanced = torch.clamp(foreground + 0.1 * residual, -1, 1)
        # If inputs are [0,1], clamp to [0,1]
        if foreground.min() >= 0.0 and foreground.max() <= 1.0:
            enhanced = torch.clamp(enhanced, 0.0, 1.0)
        return enhanced


# -------------------------------
# Model Manager
# -------------------------------

class ModelManager:
    """Central model management system."""

    def __init__(self, config: Optional[ModelConfig] = None):
        self.config = config or ModelConfig()
        self.cache = ModelCache(max_size=self.config.cache_size)

        # Instantiate default models
        self.sam2 = SAM2Model(self.config)
        self.matanyone = MatAnyoneModel(self.config)

    def load_all(self):
        """Load all models."""
        logger.info("Loading all models...")
        self.sam2.load()
        self.matanyone.load()
        logger.info("All models loaded")

    def get_sam2(self) -> 'SAM2Model':
        """Get SAM2 model (lazy-loaded)."""
        if not self.sam2.loaded:
            self.sam2.load()
        return self.sam2

    def get_matanyone(self) -> 'MatAnyoneModel':
        """Get MatAnyone model (lazy-loaded)."""
        if not self.matanyone.loaded:
            self.matanyone.load()
        return self.matanyone

    def process_frame(self, image: np.ndarray, mask: Optional[np.ndarray] = None) -> Dict[str, Any]:
        """Process single frame through the pipeline."""
        image_tensor = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float() / 255.0
        image_tensor = image_tensor.to(self.config.device)

        if mask is None:
            mask = self.sam2.predict(image)

        mask_tensor = torch.from_numpy(mask).float().to(self.config.device)

        result = self.matanyone(image_tensor, mask_tensor)

        output = {
            "alpha": result["alpha"].squeeze().cpu().numpy(),
            "foreground": (result["foreground"].squeeze().permute(1, 2, 0).cpu().numpy() * 255.0),
            "confidence": result["confidence"].detach().cpu().numpy(),
        }
        return output

    def cleanup(self):
        """Cleanup models and free memory."""
        self.cache.clear()
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()


# -------------------------------
# ModelType / ModelFactory (compat)
# -------------------------------

class ModelType(Enum):
    SAM2 = "sam2"
    MATANYONE = "matanyone"


class ModelFactory:
    """
    Lightweight factory that returns cached model instances by type.
    Kept for backward compatibility with modules importing from core.models.
    """

    def __init__(self, config: Optional[ModelConfig] = None):
        self.config = config or ModelConfig()
        self._instances: Dict[ModelType, Any] = {}

    def get(self, model_type: 'ModelType | str'):
        """Return (and cache) a model instance for the given type."""
        if isinstance(model_type, str):
            try:
                model_type = ModelType(model_type.lower())
            except Exception:
                raise ValueError(f"Unknown model type: {model_type}")

        if model_type == ModelType.SAM2:
            if model_type not in self._instances:
                self._instances[model_type] = SAM2Model(self.config)
            return self._instances[model_type]

        if model_type == ModelType.MATANYONE:
            if model_type not in self._instances:
                self._instances[model_type] = MatAnyoneModel(self.config)
            return self._instances[model_type]

        raise ValueError(f"Unsupported model type: {model_type}")

    # Alias for older code
    create = get


# -------------------------------
# Exports
# -------------------------------

__all__ = [
    "ModelManager",
    "SAM2Model",
    "MatAnyoneModel",
    "ModelConfig",
    "ModelCache",
    "QualityEnhancer",
    "ModelType",
    "ModelFactory",
]