File size: 6,626 Bytes
1b16c79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
# BackgroundFX Pro Docker Deployment
This directory contains Docker configurations for deploying BackgroundFX Pro in various environments.
## Quick Start
### Prerequisites
- Docker 20.10+ installed
- Docker Compose 2.0+ installed
- NVIDIA Docker runtime (for GPU support)
- At least 16GB RAM
- 20GB+ free disk space
### GPU Deployment (Recommended)
```bash
# Build and run with GPU support
make build
make run
# Or using docker-compose directly
docker-compose up -d backgroundfx-gpu
```
Access the application at http://localhost:7860
### CPU-Only Deployment
```bash
# Build and run CPU version
make build-cpu
make run-cpu
# Or using docker-compose
docker-compose --profile cpu up -d backgroundfx-cpu
```
Access at http://localhost:7861
## Available Docker Images
### 1. GPU Image (Dockerfile)
- **Base**: nvidia/cuda:12.1.0-cudnn8-runtime-ubuntu20.04
- **Features**: Full GPU acceleration, all models supported
- **Use case**: Production deployment with NVIDIA GPU
### 2. Production Image (Dockerfile.prod)
- **Type**: Multi-stage optimized build
- **Features**: Minimal size, pre-compiled Python, security hardening
- **Use case**: Production deployment with high performance requirements
### 3. CPU Image (Dockerfile.cpu)
- **Base**: python:3.10-slim
- **Features**: CPU-optimized, smaller footprint
- **Use case**: Development, testing, or CPU-only servers
## Docker Compose Services
### Core Services
- **backgroundfx-gpu**: Main application with GPU support
- **backgroundfx-cpu**: CPU-only variant
- **redis**: Cache and job queue
- **nginx**: Reverse proxy (production profile)
### Support Services
- **model-downloader**: Pre-download models (setup profile)
- **prometheus**: Metrics collection (monitoring profile)
- **grafana**: Metrics visualization (monitoring profile)
## Configuration
### Environment Variables
Copy the example environment file and customize:
```bash
cp docker/.env.example docker/.env
```
Key settings:
- `DEVICE`: auto, cuda, or cpu
- `MODEL_CACHE_DIR`: Model storage location
- `MAX_MEMORY_GB`: Memory limit
- `QUALITY_PRESET`: low, medium, high, ultra
### Volumes
- `model-cache`: Cached ML models (~2-5GB)
- `uploads`: Uploaded files
- `outputs`: Processed results
- `redis-data`: Redis persistence
## Makefile Commands
```bash
# Building
make build # Build GPU image
make build-cpu # Build CPU image
make build-all # Build all variants
make build-nocache # Build without cache
# Running
make run # Run GPU version
make run-cpu # Run CPU version
make run-dev # Development mode
make run-prod # Production with monitoring
# Management
make stop # Stop containers
make restart # Restart containers
make clean # Clean up
make logs # View logs
make shell # Container shell
# Models
make download-models # Download all models
make list-models # List available models
# Monitoring
make status # Container status
make stats # Resource usage
make health # Health checks
```
## Production Deployment
### 1. Build Production Image
```bash
make build-prod
```
### 2. Configure Environment
Edit `docker/.env` with production settings:
- Set secure `AUTH_SECRET_KEY`
- Configure `REDIS_PASSWORD`
- Adjust resource limits
- Enable authentication if needed
### 3. Deploy with Monitoring
```bash
make run-prod
```
This starts:
- Main application (port 7860)
- API server (port 8000)
- Nginx proxy (ports 80/443)
- Redis cache
- Prometheus + Grafana monitoring
### 4. SSL/TLS Setup
Place certificates in `nginx/ssl/`:
- `nginx/ssl/cert.pem`
- `nginx/ssl/key.pem`
### 5. Scaling
For horizontal scaling:
```bash
docker-compose up -d --scale backgroundfx-gpu=3
```
## GPU Support
### Check GPU Availability
```bash
make gpu-check
# Or
docker run --rm --gpus all nvidia/cuda:12.1.0-base-ubuntu20.04 nvidia-smi
```
### Install NVIDIA Docker Runtime
Ubuntu/Debian:
```bash
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update && sudo apt-get install -y nvidia-docker2
sudo systemctl restart docker
```
## Troubleshooting
### Out of Memory
Adjust memory limits in `docker-compose.yml`:
```yaml
deploy:
resources:
limits:
memory: 8G # Reduce if needed
```
### Models Not Loading
Pre-download models:
```bash
make download-models
```
### Permission Issues
Fix ownership:
```bash
docker-compose exec -u root backgroundfx-gpu chown -R appuser:appuser /app
```
### Slow Processing
- Ensure GPU is detected: `make gpu-check`
- Check resource usage: `make stats`
- Adjust quality preset in `.env`
## Development
### Local Development with Docker
```bash
# Mount local code for live reload
docker-compose -f docker-compose.yml -f docker-compose.dev.yml up
```
### Running Tests
```bash
make test
```
### Building Custom Images
```bash
# With custom registry
make push REGISTRY=myregistry.com VERSION=1.0.0
```
## Monitoring
### Grafana Dashboard
Access at http://localhost:3000 (admin/admin)
Pre-configured dashboards:
- Container metrics
- GPU utilization
- Processing statistics
- Error rates
### Prometheus Metrics
Access at http://localhost:9090
Available metrics:
- `processing_time_seconds`
- `frames_processed_total`
- `model_load_time_seconds`
- `memory_usage_bytes`
## Backup and Restore
### Backup Volumes
```bash
make backup
```
Creates timestamped backups in `./backups/`
### Restore from Backup
```bash
make restore BACKUP_FILE=models-20240101-120000.tar.gz
```
## Security Considerations
1. **Change default passwords** in production
2. **Enable authentication** via AUTH_ENABLED=true
3. **Configure CORS** appropriately
4. **Use SSL/TLS** in production
5. **Limit exposed ports** using firewall rules
6. **Regular security updates**: `docker pull` base images
## Performance Optimization
### GPU Optimization
- Use TensorRT models when available
- Enable mixed precision with FP16
- Adjust batch size based on GPU memory
### CPU Optimization
- Use quantized models
- Enable OpenMP threading
- Adjust worker count based on cores
### Memory Optimization
- Enable swap for large videos
- Use frame skipping for preview
- Implement progressive processing
## Support
For issues or questions:
1. Check logs: `make logs`
2. Verify health: `make health`
3. Review configuration: `docker-compose config`
4. Check system requirements: `make gpu-check` |