File size: 28,750 Bytes
803d2bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 |
"""
Batch processing module for BackgroundFX Pro.
Handles efficient processing of multiple files with optimized resource management.
"""
import os
import cv2
import numpy as np
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union, Callable, Any, Generator
from dataclasses import dataclass, field
from enum import Enum
import time
import threading
from queue import Queue, PriorityQueue, Empty
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, as_completed
import multiprocessing as mp
import json
import hashlib
import pickle
import shutil
import tempfile
from datetime import datetime
import psutil
import mimetypes
from ..utils.logger import setup_logger
from ..utils.device import DeviceManager
from ..utils import TimeEstimator, MemoryMonitor
from .pipeline import ProcessingPipeline, PipelineConfig, PipelineResult, ProcessingMode
from .video_processor import VideoProcessorAPI, VideoStats
logger = setup_logger(__name__)
class BatchPriority(Enum):
"""Batch processing priority levels."""
LOW = 3
NORMAL = 2
HIGH = 1
URGENT = 0
class FileType(Enum):
"""Supported file types."""
IMAGE = "image"
VIDEO = "video"
UNKNOWN = "unknown"
@dataclass
class BatchItem:
"""Individual item in batch processing."""
id: str
input_path: str
output_path: str
file_type: FileType
priority: BatchPriority = BatchPriority.NORMAL
background: Optional[Union[str, np.ndarray]] = None
config_overrides: Dict[str, Any] = field(default_factory=dict)
metadata: Dict[str, Any] = field(default_factory=dict)
retry_count: int = 0
max_retries: int = 3
status: str = "pending"
error: Optional[str] = None
result: Optional[Any] = None
processing_time: float = 0.0
def __lt__(self, other):
"""Compare items by priority for PriorityQueue."""
return self.priority.value < other.priority.value
@dataclass
class BatchConfig:
"""Configuration for batch processing."""
# Processing settings
max_workers: int = mp.cpu_count()
use_multiprocessing: bool = False
chunk_size: int = 10
# Resource limits
max_memory_gb: float = 8.0
max_gpu_memory_gb: float = 4.0
cpu_limit_percent: float = 80.0
# File handling
input_dir: Optional[str] = None
output_dir: Optional[str] = None
recursive: bool = True
file_patterns: List[str] = field(default_factory=lambda: ["*.jpg", "*.png", "*.mp4", "*.avi"])
preserve_structure: bool = True
# Background settings
default_background: Optional[Union[str, np.ndarray]] = None
background_per_file: Dict[str, Union[str, np.ndarray]] = field(default_factory=dict)
# Quality settings
image_quality: int = 95
video_quality: str = "high"
maintain_resolution: bool = True
# Optimization
enable_caching: bool = True
cache_dir: Optional[str] = None
deduplicate: bool = True
# Progress and logging
progress_callback: Optional[Callable[[float, Dict], None]] = None
save_report: bool = True
report_path: Optional[str] = None
# Error handling
stop_on_error: bool = False
skip_existing: bool = True
# Pipeline config
pipeline_config: Optional[PipelineConfig] = None
@dataclass
class BatchReport:
"""Batch processing report."""
start_time: datetime
end_time: Optional[datetime] = None
total_items: int = 0
processed_items: int = 0
successful_items: int = 0
failed_items: int = 0
skipped_items: int = 0
total_processing_time: float = 0.0
avg_processing_time: float = 0.0
total_input_size_mb: float = 0.0
total_output_size_mb: float = 0.0
compression_ratio: float = 1.0
errors: List[Dict[str, Any]] = field(default_factory=list)
warnings: List[str] = field(default_factory=list)
resource_usage: Dict[str, Any] = field(default_factory=dict)
quality_metrics: Dict[str, float] = field(default_factory=dict)
class BatchProcessor:
"""High-performance batch processing engine."""
def __init__(self, config: Optional[BatchConfig] = None):
"""
Initialize batch processor.
Args:
config: Batch processing configuration
"""
self.config = config or BatchConfig()
self.logger = setup_logger(f"{__name__}.BatchProcessor")
# Initialize components
self.device_manager = DeviceManager()
self.memory_monitor = MemoryMonitor()
self.time_estimator = TimeEstimator()
# Processing engines
self.pipeline = ProcessingPipeline(self.config.pipeline_config)
self.video_processor = VideoProcessorAPI()
# State management
self.is_processing = False
self.should_stop = False
self.current_item = None
# Queues
self.pending_queue = PriorityQueue()
self.processing_queue = Queue()
self.completed_queue = Queue()
# Worker pool
if self.config.use_multiprocessing:
self.executor = ProcessPoolExecutor(max_workers=self.config.max_workers)
else:
self.executor = ThreadPoolExecutor(max_workers=self.config.max_workers)
# Cache
self.cache_dir = Path(self.config.cache_dir or tempfile.mkdtemp(prefix="bgfx_cache_"))
self.cache_index = {}
# Statistics
self.report = BatchReport(start_time=datetime.now())
self.logger.info(f"BatchProcessor initialized with {self.config.max_workers} workers")
def process_directory(self,
input_dir: str,
output_dir: str,
background: Optional[Union[str, np.ndarray]] = None) -> BatchReport:
"""
Process all supported files in a directory.
Args:
input_dir: Input directory path
output_dir: Output directory path
background: Default background for all files
Returns:
Batch processing report
"""
input_path = Path(input_dir)
output_path = Path(output_dir)
if not input_path.exists():
raise ValueError(f"Input directory does not exist: {input_dir}")
output_path.mkdir(parents=True, exist_ok=True)
# Collect files
items = self._collect_files(input_path, output_path, background)
if not items:
self.logger.warning("No files found to process")
return self.report
self.logger.info(f"Found {len(items)} files to process")
# Process batch
return self.process_batch(items)
def _collect_files(self,
input_path: Path,
output_path: Path,
background: Optional[Union[str, np.ndarray]]) -> List[BatchItem]:
"""Collect all files to process from directory."""
items = []
# Determine search method
if self.config.recursive:
file_iterator = input_path.rglob
else:
file_iterator = input_path.glob
# Collect files matching patterns
for pattern in self.config.file_patterns:
for file_path in file_iterator(pattern):
if file_path.is_file():
# Determine output path
if self.config.preserve_structure:
relative_path = file_path.relative_to(input_path)
output_file = output_path / relative_path.parent / f"{file_path.stem}_processed{file_path.suffix}"
else:
output_file = output_path / f"{file_path.stem}_processed{file_path.suffix}"
# Skip if exists and configured to skip
if self.config.skip_existing and output_file.exists():
self.report.skipped_items += 1
continue
# Determine file type
file_type = self._detect_file_type(str(file_path))
# Create batch item
item = BatchItem(
id=self._generate_item_id(file_path),
input_path=str(file_path),
output_path=str(output_file),
file_type=file_type,
background=self.config.background_per_file.get(
str(file_path),
background or self.config.default_background
)
)
items.append(item)
return items
def process_batch(self, items: List[BatchItem]) -> BatchReport:
"""
Process a batch of items.
Args:
items: List of batch items to process
Returns:
Batch processing report
"""
self.is_processing = True
self.report = BatchReport(start_time=datetime.now())
self.report.total_items = len(items)
try:
# Add items to queue
for item in items:
self.pending_queue.put(item)
# Check for duplicates if enabled
if self.config.deduplicate:
items = self._deduplicate_items(items)
# Start processing
self._process_items(items)
finally:
self.is_processing = False
self.report.end_time = datetime.now()
self.report.total_processing_time = (
self.report.end_time - self.report.start_time
).total_seconds()
if self.report.processed_items > 0:
self.report.avg_processing_time = (
self.report.total_processing_time / self.report.processed_items
)
# Save report if configured
if self.config.save_report:
self._save_report()
return self.report
def _process_items(self, items: List[BatchItem]):
"""Process all items in the batch."""
# Chunk items for better resource management
chunks = [items[i:i + self.config.chunk_size]
for i in range(0, len(items), self.config.chunk_size)]
for chunk_idx, chunk in enumerate(chunks):
if self.should_stop:
break
# Check resource availability
self._wait_for_resources()
# Process chunk
futures = []
for item in chunk:
if self.should_stop:
break
future = self.executor.submit(self._process_single_item, item)
futures.append((future, item))
# Collect results
for future, item in futures:
try:
result = future.result(timeout=300) # 5 minute timeout
item.result = result
item.status = "completed" if result else "failed"
if result:
self.report.successful_items += 1
else:
self.report.failed_items += 1
except Exception as e:
self.logger.error(f"Processing failed for {item.id}: {e}")
item.status = "failed"
item.error = str(e)
self.report.failed_items += 1
if self.config.stop_on_error:
self.should_stop = True
break
finally:
self.report.processed_items += 1
# Progress callback
if self.config.progress_callback:
progress = self.report.processed_items / self.report.total_items
self.config.progress_callback(progress, {
'current_item': item.id,
'processed': self.report.processed_items,
'total': self.report.total_items,
'successful': self.report.successful_items,
'failed': self.report.failed_items
})
def _process_single_item(self, item: BatchItem) -> bool:
"""
Process a single batch item.
Args:
item: Batch item to process
Returns:
True if successful
"""
start_time = time.time()
try:
# Check cache
if self.config.enable_caching:
cached_result = self._check_cache(item)
if cached_result is not None:
self._save_cached_result(item, cached_result)
item.processing_time = time.time() - start_time
return True
# Process based on file type
if item.file_type == FileType.IMAGE:
success = self._process_image(item)
elif item.file_type == FileType.VIDEO:
success = self._process_video(item)
else:
raise ValueError(f"Unsupported file type: {item.file_type}")
# Cache result if successful
if success and self.config.enable_caching:
self._cache_result(item)
item.processing_time = time.time() - start_time
# Update file size statistics
self._update_size_stats(item)
return success
except Exception as e:
self.logger.error(f"Error processing {item.id}: {e}")
item.error = str(e)
# Retry logic
if item.retry_count < item.max_retries:
item.retry_count += 1
self.logger.info(f"Retrying {item.id} (attempt {item.retry_count}/{item.max_retries})")
return self._process_single_item(item)
return False
def _process_image(self, item: BatchItem) -> bool:
"""Process an image file."""
try:
# Load image
image = cv2.imread(item.input_path)
if image is None:
raise ValueError(f"Cannot load image: {item.input_path}")
# Apply config overrides
pipeline_config = self.config.pipeline_config or PipelineConfig()
for key, value in item.config_overrides.items():
if hasattr(pipeline_config, key):
setattr(pipeline_config, key, value)
# Process through pipeline
result = self.pipeline.process_image(
image,
item.background
)
if result.success and result.output_image is not None:
# Create output directory
output_path = Path(item.output_path)
output_path.parent.mkdir(parents=True, exist_ok=True)
# Save result
if output_path.suffix.lower() in ['.jpg', '.jpeg']:
cv2.imwrite(
str(output_path),
result.output_image,
[cv2.IMWRITE_JPEG_QUALITY, self.config.image_quality]
)
else:
cv2.imwrite(str(output_path), result.output_image)
# Store quality metrics
item.metadata['quality_score'] = result.quality_score
self._update_quality_metrics(result.quality_score)
return True
return False
except Exception as e:
self.logger.error(f"Image processing failed for {item.input_path}: {e}")
raise
def _process_video(self, item: BatchItem) -> bool:
"""Process a video file."""
try:
# Create output directory
output_path = Path(item.output_path)
output_path.parent.mkdir(parents=True, exist_ok=True)
# Process video
stats = self.video_processor.process_video(
item.input_path,
str(output_path),
item.background
)
# Store statistics
item.metadata['video_stats'] = {
'frames_processed': stats.frames_processed,
'frames_dropped': stats.frames_dropped,
'processing_fps': stats.processing_fps,
'avg_quality': stats.avg_quality_score
}
self._update_quality_metrics(stats.avg_quality_score)
return stats.frames_processed > 0
except Exception as e:
self.logger.error(f"Video processing failed for {item.input_path}: {e}")
raise
def _detect_file_type(self, file_path: str) -> FileType:
"""Detect file type from path."""
mime_type, _ = mimetypes.guess_type(file_path)
if mime_type:
if mime_type.startswith('image/'):
return FileType.IMAGE
elif mime_type.startswith('video/'):
return FileType.VIDEO
# Fallback to extension
ext = Path(file_path).suffix.lower()
if ext in ['.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.webp']:
return FileType.IMAGE
elif ext in ['.mp4', '.avi', '.mov', '.mkv', '.webm', '.flv']:
return FileType.VIDEO
return FileType.UNKNOWN
def _generate_item_id(self, file_path: Path) -> str:
"""Generate unique ID for batch item."""
# Combine path and timestamp for uniqueness
content = f"{file_path}{time.time()}"
return hashlib.md5(content.encode()).hexdigest()[:16]
def _deduplicate_items(self, items: List[BatchItem]) -> List[BatchItem]:
"""Remove duplicate items based on file content hash."""
seen_hashes = set()
unique_items = []
for item in items:
try:
file_hash = self._calculate_file_hash(item.input_path)
if file_hash not in seen_hashes:
seen_hashes.add(file_hash)
unique_items.append(item)
else:
self.logger.info(f"Skipping duplicate: {item.input_path}")
self.report.skipped_items += 1
except Exception as e:
self.logger.warning(f"Cannot calculate hash for {item.input_path}: {e}")
unique_items.append(item)
return unique_items
def _calculate_file_hash(self, file_path: str, chunk_size: int = 8192) -> str:
"""Calculate MD5 hash of file."""
hasher = hashlib.md5()
with open(file_path, 'rb') as f:
while chunk:= f.read(chunk_size):
hasher.update(chunk)
return hasher.hexdigest()
def _check_cache(self, item: BatchItem) -> Optional[Any]:
"""Check if item result is cached."""
cache_key = self._get_cache_key(item)
cache_file = self.cache_dir / f"{cache_key}.pkl"
if cache_file.exists():
try:
with open(cache_file, 'rb') as f:
cached_data = pickle.load(f)
# Verify cache validity
if cached_data.get('input_hash') == self._calculate_file_hash(item.input_path):
self.logger.info(f"Using cached result for {item.id}")
return cached_data['result']
except Exception as e:
self.logger.warning(f"Cache read failed: {e}")
return None
def _cache_result(self, item: BatchItem):
"""Cache processing result."""
try:
cache_key = self._get_cache_key(item)
cache_file = self.cache_dir / f"{cache_key}.pkl"
# Read processed file
with open(item.output_path, 'rb') as f:
result_data = f.read()
# Cache data
cache_data = {
'input_hash': self._calculate_file_hash(item.input_path),
'result': result_data,
'metadata': item.metadata,
'timestamp': time.time()
}
with open(cache_file, 'wb') as f:
pickle.dump(cache_data, f)
except Exception as e:
self.logger.warning(f"Cache write failed: {e}")
def _save_cached_result(self, item: BatchItem, cached_data: bytes):
"""Save cached result to output file."""
output_path = Path(item.output_path)
output_path.parent.mkdir(parents=True, exist_ok=True)
with open(output_path, 'wb') as f:
f.write(cached_data)
def _get_cache_key(self, item: BatchItem) -> str:
"""Generate cache key for item."""
# Include relevant parameters in cache key
key_parts = [
item.input_path,
str(item.background) if item.background is not None else "none",
json.dumps(item.config_overrides, sort_keys=True)
]
key_string = "|".join(key_parts)
return hashlib.md5(key_string.encode()).hexdigest()
def _wait_for_resources(self):
"""Wait for sufficient resources before processing."""
while True:
# Check CPU usage
cpu_percent = psutil.cpu_percent(interval=1)
if cpu_percent > self.config.cpu_limit_percent:
self.logger.debug(f"CPU usage high ({cpu_percent}%), waiting...")
time.sleep(2)
continue
# Check memory
memory = psutil.virtual_memory()
memory_gb = (memory.total - memory.available) / (1024**3)
if memory_gb > self.config.max_memory_gb:
self.logger.debug(f"Memory usage high ({memory_gb:.1f}GB), waiting...")
time.sleep(2)
continue
# Resources available
break
def _update_size_stats(self, item: BatchItem):
"""Update file size statistics."""
try:
input_size = os.path.getsize(item.input_path) / (1024**2) # MB
output_size = os.path.getsize(item.output_path) / (1024**2) # MB
self.report.total_input_size_mb += input_size
self.report.total_output_size_mb += output_size
if self.report.total_input_size_mb > 0:
self.report.compression_ratio = (
self.report.total_output_size_mb / self.report.total_input_size_mb
)
except Exception as e:
self.logger.warning(f"Cannot update size stats: {e}")
def _update_quality_metrics(self, quality_score: float):
"""Update quality metrics in report."""
if 'scores' not in self.report.quality_metrics:
self.report.quality_metrics['scores'] = []
self.report.quality_metrics['scores'].append(quality_score)
scores = self.report.quality_metrics['scores']
self.report.quality_metrics['avg_quality'] = np.mean(scores)
self.report.quality_metrics['min_quality'] = np.min(scores)
self.report.quality_metrics['max_quality'] = np.max(scores)
self.report.quality_metrics['std_quality'] = np.std(scores)
def _save_report(self):
"""Save processing report to file."""
try:
report_path = self.config.report_path
if not report_path:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
report_path = f"batch_report_{timestamp}.json"
report_dict = {
'start_time': self.report.start_time.isoformat(),
'end_time': self.report.end_time.isoformat() if self.report.end_time else None,
'total_items': self.report.total_items,
'processed_items': self.report.processed_items,
'successful_items': self.report.successful_items,
'failed_items': self.report.failed_items,
'skipped_items': self.report.skipped_items,
'total_processing_time': self.report.total_processing_time,
'avg_processing_time': self.report.avg_processing_time,
'total_input_size_mb': self.report.total_input_size_mb,
'total_output_size_mb': self.report.total_output_size_mb,
'compression_ratio': self.report.compression_ratio,
'quality_metrics': self.report.quality_metrics,
'errors': self.report.errors,
'warnings': self.report.warnings
}
with open(report_path, 'w') as f:
json.dump(report_dict, f, indent=2)
self.logger.info(f"Report saved to {report_path}")
except Exception as e:
self.logger.error(f"Failed to save report: {e}")
def process_with_pattern(self,
pattern: str,
output_template: str,
background: Optional[Union[str, np.ndarray]] = None) -> BatchReport:
"""
Process files matching a pattern with template-based output.
Args:
pattern: File pattern (e.g., "images/*.jpg")
output_template: Output path template (e.g., "output/{name}_bg.{ext}")
background: Background for processing
Returns:
Batch processing report
"""
items = []
for file_path in Path().glob(pattern):
if file_path.is_file():
# Parse template
output_path = output_template.format(
name=file_path.stem,
ext=file_path.suffix[1:],
dir=file_path.parent,
date=datetime.now().strftime("%Y%m%d")
)
item = BatchItem(
id=self._generate_item_id(file_path),
input_path=str(file_path),
output_path=output_path,
file_type=self._detect_file_type(str(file_path)),
background=background
)
items.append(item)
return self.process_batch(items)
def stop_processing(self):
"""Stop batch processing."""
self.should_stop = True
self.logger.info("Stopping batch processing...")
def cleanup(self):
"""Clean up resources."""
self.stop_processing()
self.executor.shutdown(wait=True)
# Clean cache if temporary
if self.config.cache_dir is None:
shutil.rmtree(self.cache_dir, ignore_errors=True)
self.logger.info("Batch processor cleanup complete")
def get_status(self) -> Dict[str, Any]:
"""Get current processing status."""
return {
'is_processing': self.is_processing,
'total_items': self.report.total_items,
'processed_items': self.report.processed_items,
'successful_items': self.report.successful_items,
'failed_items': self.report.failed_items,
'skipped_items': self.report.skipped_items,
'current_item': self.current_item.id if self.current_item else None,
'progress': (self.report.processed_items / self.report.total_items * 100
if self.report.total_items > 0 else 0),
'estimated_time_remaining': self.time_estimator.estimate_remaining(
self.report.processed_items,
self.report.total_items
) if self.is_processing else None
} |