File size: 26,849 Bytes
b06a17f
 
 
 
 
 
 
 
 
 
 
 
 
 
b157fef
 
 
 
 
b06a17f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b157fef
b06a17f
 
 
b157fef
b06a17f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b157fef
b06a17f
 
 
 
 
 
 
 
 
 
 
 
 
 
b157fef
b06a17f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b157fef
b06a17f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b157fef
b06a17f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b157fef
b06a17f
 
 
 
 
b157fef
b06a17f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b157fef
b06a17f
 
 
b157fef
b06a17f
 
 
 
 
 
b157fef
b06a17f
 
 
 
 
 
 
 
 
 
 
 
b157fef
b06a17f
 
 
 
b157fef
b06a17f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
"""
Core Video Processing Module
Handles the main video processing pipeline, frame processing, and background replacement
"""

import os
import cv2
import numpy as np
import time
import logging
import threading
from typing import Optional, Tuple, Dict, Any, Callable
from pathlib import Path

# Import modular components
import app_config
import memory_manager
import progress_tracker
import exceptions

# Import utilities
from utilities import (
    segment_person_hq,
    refine_mask_hq,
    replace_background_hq,
    create_professional_background,
    PROFESSIONAL_BACKGROUNDS,
    validate_video_file
)

logger = logging.getLogger(__name__)

class CoreVideoProcessor:
    """
    Core video processing pipeline for background replacement
    """
    
    def __init__(self, sam2_predictor: Any, matanyone_model: Any, 
                 config: app_config.ProcessingConfig, memory_mgr: memory_manager.MemoryManager):
        self.sam2_predictor = sam2_predictor
        self.matanyone_model = matanyone_model
        self.config = config
        self.memory_manager = memory_mgr
        
        # Processing state
        self.processing_active = False
        self.last_refined_mask = None
        self.frame_cache = {}
        
        # Statistics
        self.stats = {
            'videos_processed': 0,
            'total_frames_processed': 0,
            'total_processing_time': 0.0,
            'average_fps': 0.0,
            'failed_frames': 0,
            'successful_frames': 0,
            'cache_hits': 0,
            'segmentation_errors': 0,
            'refinement_errors': 0
        }
        
        # Quality settings based on config
        self.quality_settings = config.get_quality_settings()
        
        logger.info("CoreVideoProcessor initialized")
        logger.info(f"Quality preset: {config.quality_preset}")
        logger.info(f"Quality settings: {self.quality_settings}")
    
    def process_video(
        self,
        video_path: str,
        background_choice: str,
        custom_background_path: Optional[str] = None,
        progress_callback: Optional[Callable] = None,
        cancel_event: Optional[threading.Event] = None,
        preview_mask: bool = False,
        preview_greenscreen: bool = False
    ) -> Tuple[Optional[str], str]:
        """
        Process video with background replacement
        
        Args:
            video_path: Input video path
            background_choice: Background type or name
            custom_background_path: Path to custom background (if applicable)
            progress_callback: Progress update callback
            cancel_event: Event to cancel processing
            preview_mask: Generate mask preview instead of final output
            preview_greenscreen: Generate greenscreen preview
            
        Returns:
            Tuple of (output_path, status_message)
        """
        if self.processing_active:
            return None, "Processing already in progress"
        
        self.processing_active = True
        start_time = time.time()
        
        try:
            # Validate input video
            is_valid, validation_msg = validate_video_file(video_path)
            if not is_valid:
                return None, f"Invalid video file: {validation_msg}"
            
            # Open video file
            cap = cv2.VideoCapture(video_path)
            if not cap.isOpened():
                return None, "Could not open video file"
            
            # Get video properties
            video_info = self._get_video_info(cap)
            logger.info(f"Processing video: {video_info}")
            
            # Check memory requirements
            memory_check = self.memory_manager.can_process_video(
                video_info['width'], video_info['height']
            )
            
            if not memory_check['can_process']:
                cap.release()
                return None, f"Insufficient memory: {memory_check['recommendations']}"
            
            # Prepare background
            background = self.prepare_background(
                background_choice, custom_background_path, 
                video_info['width'], video_info['height']
            )
            
            if background is None:
                cap.release()
                return None, "Failed to prepare background"
            
            # Setup output video
            output_path = self._setup_output_video(video_info, preview_mask, preview_greenscreen)
            out = self._create_video_writer(output_path, video_info)
            
            if out is None:
                cap.release()
                return None, "Could not create output video writer"
            
            # Process video frames
            result = self._process_video_frames(
                cap, out, background, video_info, 
                progress_callback, cancel_event, 
                preview_mask, preview_greenscreen
            )
            
            # Cleanup
            cap.release()
            out.release()
            
            if result['success']:
                # Update statistics
                processing_time = time.time() - start_time
                self._update_processing_stats(video_info, processing_time, result)
                
                success_msg = (
                    f"Processing completed successfully!\n"
                    f"Processed: {result['successful_frames']}/{result['total_frames']} frames\n"
                    f"Time: {processing_time:.1f}s\n"
                    f"Average FPS: {result['total_frames'] / processing_time:.1f}\n"
                    f"Background: {background_choice}"
                )
                
                return output_path, success_msg
            else:
                # Clean up failed output
                try:
                    os.remove(output_path)
                except:
                    pass
                return None, result['error_message']
                
        except Exception as e:
            logger.error(f"Video processing failed: {e}")
            return None, f"Processing failed: {str(e)}"
        
        finally:
            self.processing_active = False
    
    def _get_video_info(self, cap: cv2.VideoCapture) -> Dict[str, Any]:
        """Extract comprehensive video information"""
        return {
            'fps': cap.get(cv2.CAP_PROP_FPS),
            'total_frames': int(cap.get(cv2.CAP_PROP_FRAME_COUNT)),
            'width': int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
            'height': int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)),
            'duration': cap.get(cv2.CAP_PROP_FRAME_COUNT) / cap.get(cv2.CAP_PROP_FPS),
            'codec': int(cap.get(cv2.CAP_PROP_FOURCC))
        }
    
    def _setup_output_video(self, video_info: Dict[str, Any], 
                           preview_mask: bool, preview_greenscreen: bool) -> str:
        """Setup output video path"""
        timestamp = int(time.time())
        
        if preview_mask:
            filename = f"mask_preview_{timestamp}.mp4"
        elif preview_greenscreen:
            filename = f"greenscreen_preview_{timestamp}.mp4"
        else:
            filename = f"processed_video_{timestamp}.mp4"
        
        return os.path.join(self.config.temp_dir, filename)
    
    def _create_video_writer(self, output_path: str, 
                           video_info: Dict[str, Any]) -> Optional[cv2.VideoWriter]:
        """Create video writer with optimal settings"""
        try:
            # Choose codec based on quality settings
            if self.config.output_quality == 'high':
                fourcc = cv2.VideoWriter_fourcc(*'mp4v')
            else:
                fourcc = cv2.VideoWriter_fourcc(*'XVID')
            
            writer = cv2.VideoWriter(
                output_path, 
                fourcc, 
                video_info['fps'],
                (video_info['width'], video_info['height'])
            )
            
            if not writer.isOpened():
                logger.error("Failed to open video writer")
                return None
                
            return writer
            
        except Exception as e:
            logger.error(f"Error creating video writer: {e}")
            return None
    
    def _process_video_frames(
        self,
        cap: cv2.VideoCapture,
        out: cv2.VideoWriter,
        background: np.ndarray,
        video_info: Dict[str, Any],
        progress_callback: Optional[Callable],
        cancel_event: Optional[threading.Event],
        preview_mask: bool,
        preview_greenscreen: bool
    ) -> Dict[str, Any]:
        """Process all video frames"""
        
        # Initialize progress tracking
        prog_tracker = progress_tracker.ProgressTracker(
            total_frames=video_info['total_frames'],
            callback=progress_callback,
            track_performance=True
        )
        
        frame_count = 0
        successful_frames = 0
        failed_frames = 0
        
        # Reset mask cache
        self.last_refined_mask = None
        self.frame_cache.clear()
        
        try:
            prog_tracker.set_stage("Processing frames")
            
            while True:
                # Check for cancellation
                if cancel_event and cancel_event.is_set():
                    return {
                        'success': False,
                        'error_message': 'Processing cancelled by user',
                        'total_frames': frame_count,
                        'successful_frames': successful_frames,
                        'failed_frames': failed_frames
                    }
                
                # Read frame
                ret, frame = cap.read()
                if not ret:
                    break
                
                try:
                    # Update progress
                    prog_tracker.update(frame_count, "Processing frame")
                    
                    # Process frame
                    processed_frame = self._process_single_frame(
                        frame, background, frame_count, 
                        preview_mask, preview_greenscreen
                    )
                    
                    # Write processed frame
                    out.write(processed_frame)
                    successful_frames += 1
                    
                    # Memory management
                    if frame_count % self.config.memory_cleanup_interval == 0:
                        self.memory_manager.auto_cleanup_if_needed()
                    
                except Exception as frame_error:
                    logger.warning(f"Frame {frame_count} processing failed: {frame_error}")
                    
                    # Write original frame as fallback
                    out.write(frame)
                    failed_frames += 1
                    self.stats['failed_frames'] += 1
                
                frame_count += 1
                
                # Skip frames if configured (for performance)
                if self.config.frame_skip > 1:
                    for _ in range(self.config.frame_skip - 1):
                        ret, _ = cap.read()
                        if not ret:
                            break
                        frame_count += 1
            
            # Finalize progress tracking
            final_stats = prog_tracker.finalize()
            
            return {
                'success': successful_frames > 0,
                'error_message': f'No frames processed successfully' if successful_frames == 0 else '',
                'total_frames': frame_count,
                'successful_frames': successful_frames,
                'failed_frames': failed_frames,
                'processing_stats': final_stats
            }
            
        except Exception as e:
            logger.error(f"Frame processing loop failed: {e}")
            return {
                'success': False,
                'error_message': f'Frame processing failed: {str(e)}',
                'total_frames': frame_count,
                'successful_frames': successful_frames,
                'failed_frames': failed_frames
            }
    
    def _process_single_frame(
        self,
        frame: np.ndarray,
        background: np.ndarray,
        frame_number: int,
        preview_mask: bool,
        preview_greenscreen: bool
    ) -> np.ndarray:
        """Process a single video frame"""
        
        try:
            # Person segmentation
            mask = self._segment_person(frame, frame_number)
            
            # Mask refinement (keyframe-based for performance)
            if self._should_refine_mask(frame_number):
                refined_mask = self._refine_mask(frame, mask, frame_number)
                self.last_refined_mask = refined_mask.copy()
            else:
                # Use temporal consistency with previous refined mask
                refined_mask = self._apply_temporal_consistency(mask, frame_number)
            
            # Generate output based on mode
            if preview_mask:
                return self._create_mask_preview(frame, refined_mask)
            elif preview_greenscreen:
                return self._create_greenscreen_preview(frame, refined_mask)
            else:
                return self._replace_background(frame, refined_mask, background)
                
        except Exception as e:
            logger.warning(f"Single frame processing failed: {e}")
            raise
    
    def _segment_person(self, frame: np.ndarray, frame_number: int) -> np.ndarray:
        """Perform person segmentation"""
        try:
            mask = segment_person_hq(frame, self.sam2_predictor)
            
            if mask is None or mask.size == 0:
                raise exceptions.SegmentationError(frame_number, "Segmentation returned empty mask")
            
            return mask
            
        except Exception as e:
            self.stats['segmentation_errors'] += 1
            raise exceptions.SegmentationError(frame_number, f"Segmentation failed: {str(e)}")
    
    def _should_refine_mask(self, frame_number: int) -> bool:
        """Determine if mask should be refined for this frame"""
        # Refine on keyframes or if no previous refined mask exists
        return (
            frame_number % self.quality_settings['keyframe_interval'] == 0 or 
            self.last_refined_mask is None or
            not self.quality_settings.get('temporal_consistency', True)
        )
    
    def _refine_mask(self, frame: np.ndarray, mask: np.ndarray, frame_number: int) -> np.ndarray:
        """Refine mask using MatAnyone or fallback methods"""
        try:
            if self.matanyone_model is not None and self.quality_settings.get('edge_refinement', True):
                refined_mask = refine_mask_hq(frame, mask, self.matanyone_model)
            else:
                # Fallback refinement using OpenCV operations
                refined_mask = self._fallback_mask_refinement(mask)
            
            return refined_mask
            
        except Exception as e:
            self.stats['refinement_errors'] += 1
            logger.warning(f"Mask refinement failed for frame {frame_number}: {e}")
            # Return original mask as fallback
            return mask
    
    def _fallback_mask_refinement(self, mask: np.ndarray) -> np.ndarray:
        """Fallback mask refinement using basic OpenCV operations"""
        try:
            # Morphological operations to clean up mask
            kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
            refined = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
            refined = cv2.morphologyEx(refined, cv2.MORPH_OPEN, kernel)
            
            # Smooth edges
            refined = cv2.GaussianBlur(refined, (3, 3), 1.0)
            
            return refined
            
        except Exception as e:
            logger.warning(f"Fallback mask refinement failed: {e}")
            return mask
    
    def _apply_temporal_consistency(self, current_mask: np.ndarray, frame_number: int) -> np.ndarray:
        """Apply temporal consistency using previous refined mask"""
        if self.last_refined_mask is None or not self.quality_settings.get('temporal_consistency', True):
            return current_mask
        
        try:
            # Blend current mask with previous refined mask
            alpha = 0.7  # Weight for current mask
            beta = 0.3   # Weight for previous mask
            
            # Ensure masks have same shape
            if current_mask.shape != self.last_refined_mask.shape:
                last_mask = cv2.resize(self.last_refined_mask, 
                                     (current_mask.shape[1], current_mask.shape[0]))
            else:
                last_mask = self.last_refined_mask
            
            # Weighted blend
            blended_mask = cv2.addWeighted(current_mask, alpha, last_mask, beta, 0)
            
            # Apply slight smoothing for temporal stability
            blended_mask = cv2.GaussianBlur(blended_mask, (3, 3), 0.5)
            
            return blended_mask
            
        except Exception as e:
            logger.warning(f"Temporal consistency application failed: {e}")
            return current_mask
    
    def _create_mask_preview(self, frame: np.ndarray, mask: np.ndarray) -> np.ndarray:
        """Create mask visualization preview"""
        try:
            # Create colored mask overlay
            mask_colored = np.zeros_like(frame)
            mask_colored[:, :, 1] = mask  # Green channel for person
            
            # Blend with original frame
            alpha = 0.6
            preview = cv2.addWeighted(frame, 1-alpha, mask_colored, alpha, 0)
            
            return preview
            
        except Exception as e:
            logger.warning(f"Mask preview creation failed: {e}")
            return frame
    
    def _create_greenscreen_preview(self, frame: np.ndarray, mask: np.ndarray) -> np.ndarray:
        """Create green screen preview"""
        try:
            # Create pure green background
            green_bg = np.zeros_like(frame)
            green_bg[:, :] = [0, 255, 0]  # Pure green in BGR
            
            # Apply mask
            mask_3ch = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) if len(mask.shape) == 2 else mask
            mask_norm = mask_3ch.astype(np.float32) / 255.0
            
            result = (frame * mask_norm + green_bg * (1 - mask_norm)).astype(np.uint8)
            
            return result
            
        except Exception as e:
            logger.warning(f"Greenscreen preview creation failed: {e}")
            return frame
    
    def _replace_background(self, frame: np.ndarray, mask: np.ndarray, background: np.ndarray) -> np.ndarray:
        """Replace background using the refined mask"""
        try:
            result = replace_background_hq(frame, mask, background)
            return result
            
        except Exception as e:
            logger.warning(f"Background replacement failed: {e}")
            return frame
    
    def prepare_background(
        self,
        background_choice: str,
        custom_background_path: Optional[str],
        width: int,
        height: int
    ) -> Optional[np.ndarray]:
        """
        Prepare background image for processing
        
        Args:
            background_choice: Background type or name
            custom_background_path: Path to custom background
            width: Target width
            height: Target height
            
        Returns:
            Prepared background image or None if failed
        """
        try:
            if background_choice == "custom" and custom_background_path:
                if not os.path.exists(custom_background_path):
                    raise exceptions.BackgroundProcessingError("custom", f"File not found: {custom_background_path}")
                
                background = cv2.imread(custom_background_path)
                if background is None:
                    raise exceptions.BackgroundProcessingError("custom", "Could not read custom background image")
                
                logger.info(f"Loaded custom background: {custom_background_path}")
                
            else:
                # Use professional background
                if background_choice not in PROFESSIONAL_BACKGROUNDS:
                    raise exceptions.BackgroundProcessingError(background_choice, "Unknown professional background")
                
                bg_config = PROFESSIONAL_BACKGROUNDS[background_choice]
                background = create_professional_background(bg_config, width, height)
                
                logger.info(f"Generated professional background: {background_choice}")
            
            # Resize to match video dimensions
            if background.shape[:2] != (height, width):
                background = cv2.resize(background, (width, height), interpolation=cv2.INTER_LANCZOS4)
            
            # Validate background
            if background is None or background.size == 0:
                raise exceptions.BackgroundProcessingError(background_choice, "Background image is empty")
            
            return background
            
        except Exception as e:
            if isinstance(e, exceptions.BackgroundProcessingError):
                logger.error(str(e))
                return None
            else:
                logger.error(f"Unexpected error preparing background: {e}")
                return None
    
    def _update_processing_stats(self, video_info: Dict[str, Any], 
                               processing_time: float, result: Dict[str, Any]):
        """Update processing statistics"""
        self.stats['videos_processed'] += 1
        self.stats['total_frames_processed'] += result['successful_frames']
        self.stats['total_processing_time'] += processing_time
        self.stats['successful_frames'] += result['successful_frames']
        self.stats['failed_frames'] += result['failed_frames']
        
        # Calculate average FPS across all processing
        if self.stats['total_processing_time'] > 0:
            self.stats['average_fps'] = self.stats['total_frames_processed'] / self.stats['total_processing_time']
    
    def get_processing_capabilities(self) -> Dict[str, Any]:
        """Get current processing capabilities"""
        return {
            'sam2_available': self.sam2_predictor is not None,
            'matanyone_available': self.matanyone_model is not None,
            'quality_preset': self.config.quality_preset,
            'supports_temporal_consistency': self.quality_settings.get('temporal_consistency', False),
            'supports_edge_refinement': self.quality_settings.get('edge_refinement', False),
            'keyframe_interval': self.quality_settings['keyframe_interval'],
            'max_resolution': self.config.get_resolution_limits(),
            'supported_formats': ['.mp4', '.avi', '.mov', '.mkv'],
            'memory_limit_gb': self.memory_manager.memory_limit_gb
        }
    
    def get_status(self) -> Dict[str, Any]:
        """Get current processor status"""
        return {
            'processing_active': self.processing_active,
            'models_available': {
                'sam2': self.sam2_predictor is not None,
                'matanyone': self.matanyone_model is not None
            },
            'quality_settings': self.quality_settings,
            'statistics': self.stats.copy(),
            'cache_size': len(self.frame_cache),
            'memory_usage': self.memory_manager.get_memory_usage(),
            'capabilities': self.get_processing_capabilities()
        }
    
    def optimize_for_video(self, video_info: Dict[str, Any]) -> Dict[str, Any]:
        """Optimize settings for specific video characteristics"""
        optimizations = {
            'original_settings': self.quality_settings.copy(),
            'optimizations_applied': []
        }
        
        try:
            # High resolution video optimizations
            if video_info['width'] * video_info['height'] > 1920 * 1080:
                if self.quality_settings['keyframe_interval'] < 10:
                    self.quality_settings['keyframe_interval'] = 10
                    optimizations['optimizations_applied'].append('increased_keyframe_interval_for_high_res')
            
            # Long video optimizations
            if video_info['duration'] > 300:  # 5 minutes
                if self.config.memory_cleanup_interval > 20:
                    self.config.memory_cleanup_interval = 20
                    optimizations['optimizations_applied'].append('increased_memory_cleanup_frequency')
            
            # Low FPS video optimizations
            if video_info['fps'] < 15:
                self.quality_settings['temporal_consistency'] = False
                optimizations['optimizations_applied'].append('disabled_temporal_consistency_for_low_fps')
            
            # Memory-constrained optimizations
            memory_usage = self.memory_manager.get_memory_usage()
            memory_pressure = self.memory_manager.check_memory_pressure()
            
            if memory_pressure['under_pressure']:
                self.quality_settings['edge_refinement'] = False
                self.quality_settings['keyframe_interval'] = max(self.quality_settings['keyframe_interval'], 15)
                optimizations['optimizations_applied'].extend([
                    'disabled_edge_refinement_for_memory',
                    'increased_keyframe_interval_for_memory'
                ])
            
            optimizations['final_settings'] = self.quality_settings.copy()
            
            if optimizations['optimizations_applied']:
                logger.info(f"Applied video optimizations: {optimizations['optimizations_applied']}")
            
            return optimizations
            
        except Exception as e:
            logger.warning(f"Video optimization failed: {e}")
            return optimizations
    
    def reset_cache(self):
        """Reset frame cache and temporal state"""
        self.frame_cache.clear()
        self.last_refined_mask = None
        self.stats['cache_hits'] = 0
        logger.debug("Frame cache and temporal state reset")
    
    def cleanup(self):
        """Clean up processor resources"""
        try:
            self.reset_cache()
            self.processing_active = False
            logger.info("CoreVideoProcessor cleanup completed")
        except Exception as e:
            logger.warning(f"Error during cleanup: {e}")