File size: 8,394 Bytes
4d9f1d8 50deadb d4b7ec0 eae607d 50deadb 4d9f1d8 81ad415 50deadb 11fca32 50deadb eae607d 4d9f1d8 d4b7ec0 4d9f1d8 d4b7ec0 4d9f1d8 d4b7ec0 4d9f1d8 d4b7ec0 4d9f1d8 d4b7ec0 4d9f1d8 d4b7ec0 4d9f1d8 d4b7ec0 4d9f1d8 d4b7ec0 4d9f1d8 d4b7ec0 4d9f1d8 d4b7ec0 4d9f1d8 d4b7ec0 4d9f1d8 d4b7ec0 4d9f1d8 d4b7ec0 4d9f1d8 d4b7ec0 4d9f1d8 d4b7ec0 4d9f1d8 d4b7ec0 4d9f1d8 50deadb d4b7ec0 50deadb d4b7ec0 eae607d 50deadb d4b7ec0 50deadb 4d9f1d8 eae607d 4d9f1d8 81ad415 4d9f1d8 50deadb d4b7ec0 62ed502 d4b7ec0 eae607d d4b7ec0 50deadb d4b7ec0 62ed502 50deadb eae607d 81ad415 50deadb 81ad415 50deadb d4b7ec0 50deadb eae607d 50deadb eae607d 50deadb e98fc3c 81ad415 50deadb 4d9f1d8 d4b7ec0 50deadb 62ed502 4d9f1d8 50deadb e98fc3c d4b7ec0 50deadb 4d9f1d8 d4b7ec0 11fca32 d4b7ec0 50deadb 11fca32 50deadb 81ad415 e98fc3c 81ad415 62ed502 81ad415 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
#!/usr/bin/env python3
"""
Callbacks for BackgroundFX Pro UI
---------------------------------
All functions here are *thin* wrappers wired to the Gradio interface.
NO IMPORTS FROM core.app AT MODULE LEVEL to avoid circular imports
"""
from __future__ import annotations
import os, cv2
from typing import Any, Dict, Tuple
import numpy as np
from PIL import Image
# DO NOT import from core.app here!
# We'll get these via parameter injection or lazy imports
# ---- Optional utilities (background generator & previews) ----
_try_bg_gen = None
try:
from utils.bg_generator import generate_ai_background as _try_bg_gen # type: ignore
except Exception:
pass
# ------------------------------------------------------------------
# LIGHTWEIGHT BG GENERATOR (inline fallback)
# ------------------------------------------------------------------
def _generate_ai_background(
prompt_text: str,
width: int,
height: int,
bokeh: float,
vignette: float,
contrast: float,
):
"""
If utils.bg_generator.generate_ai_background exists, use it.
Otherwise fall back to a tiny procedural background made with PIL & NumPy.
"""
if _try_bg_gen is not None:
return _try_bg_gen(
prompt_text,
width=width,
height=height,
bokeh=bokeh,
vignette=vignette,
contrast=contrast,
)
# -------- Tiny fallback (PIL only) --------
from pathlib import Path
import time, random, numpy as np
from PIL import Image, ImageFilter, ImageOps
TMP_DIR = Path("/tmp/bgfx")
TMP_DIR.mkdir(parents=True, exist_ok=True)
palettes = {
"office": [(240, 245, 250), (210, 220, 230), (180, 190, 200)],
"studio": [(18, 18, 20), (32, 32, 36), (58, 60, 64)],
"sunset": [(255,183,77), (255,138,101), (244,143,177)],
"forest": [(46,125,50), (102,187,106), (165,214,167)],
"ocean": [(33,150,243), (3,169,244), (0,188,212)],
"minimal": [(245,246,248), (230,232,236), (214,218,224)],
"warm": [(255,224,178), (255,204,128), (255,171,145)],
"cool": [(197,202,233), (179,229,252), (178,235,242)],
"royal": [(63,81,181), (121,134,203), (159,168,218)],
}
p = (prompt_text or "").lower()
palette = next((pal for k, pal in palettes.items() if k in p), None)
if palette is None:
random.seed(hash(p) & 0xFFFFFFFF)
palette = [tuple(random.randint(90, 200) for _ in range(3)) for _ in range(3)]
def _noise(h, w, octaves=4):
acc = np.zeros((h, w), np.float32)
for o in range(octaves):
s = 2**o
small = np.random.rand(h // s + 1, w // s + 1).astype(np.float32)
acc += cv2.resize(small, (w, h), interpolation=cv2.INTER_LINEAR) / (o + 1)
acc /= max(1e-6, acc.max())
return acc
def _blend(n, pal):
h, w = n.shape
thr = [0.33, 0.66]
img = np.zeros((h, w, 3), np.float32)
c0, c1, c2 = [np.array(c, np.float32) for c in pal]
img[n < thr[0]] = c0
mid = (n >= thr[0]) & (n < thr[1])
img[mid] = c1
img[n >= thr[1]] = c2
return Image.fromarray(np.clip(img, 0, 255).astype(np.uint8))
n = _noise(height, width, 4)
out = _blend(n, palette)
if bokeh > 0:
out = out.filter(ImageFilter.GaussianBlur(radius=min(50, max(0, bokeh))))
if vignette > 0:
y, x = np.ogrid[:height, :width]
cx, cy = width / 2, height / 2
r = np.sqrt((x - cx) ** 2 + (y - cy) ** 2)
mask = 1 - np.clip(r / (max(width, height) / 1.2), 0, 1)
mask = (mask**2).astype(np.float32)
base = np.array(out).astype(np.float32) / 255.0
out = Image.fromarray(np.clip(base * (mask[..., None] * (1 - vignette) + vignette) * 255, 0, 255).astype(np.uint8))
if contrast != 1.0:
out = ImageOps.autocontrast(out, cutoff=1)
arr = np.array(out).astype(np.float32)
mean = arr.mean(axis=(0, 1), keepdims=True)
arr = (arr - mean) * float(contrast) + mean
out = Image.fromarray(np.clip(arr, 0, 255).astype(np.uint8))
ts = int(time.time() * 1000)
path = str((TMP_DIR / f"ai_bg_{ts}.png").resolve())
out.save(path)
return out, path
# ------------------------------------------------------------------
# MODEL MANAGEMENT
# ------------------------------------------------------------------
def cb_load_models() -> str:
"""Load SAM2 + MatAnyOne and return human-readable status."""
# Lazy import to avoid circular dependency
from core.app import load_models_with_validation
return load_models_with_validation()
# ------------------------------------------------------------------
# MAIN video-processing callback
# ------------------------------------------------------------------
def cb_process_video(
vid: str,
style: str,
custom_bg_path: str | None,
use_two: bool,
chroma: str,
key_color_mode: str,
prev_mask: bool,
prev_green: bool,
):
"""
Runs the two-stage (or single-stage) pipeline and returns:
(processed_video_path | None, status_message:str)
"""
# Lazy imports to avoid circular dependency
from core.app import process_video_fixed, PROCESS_CANCELLED
# Reset any prior cancel flag when user clicks Run
if PROCESS_CANCELLED.is_set():
PROCESS_CANCELLED.clear()
# Fire the core function
return process_video_fixed(
video_path=vid,
background_choice=style,
custom_background_path=custom_bg_path,
progress_callback=None,
use_two_stage=use_two,
chroma_preset=chroma,
key_color_mode=key_color_mode,
preview_mask=prev_mask,
preview_greenscreen=prev_green,
)
# ------------------------------------------------------------------
# CANCEL / STATUS / CLEAR
# ------------------------------------------------------------------
def cb_cancel() -> str:
try:
from core.app import PROCESS_CANCELLED
PROCESS_CANCELLED.set()
return "Cancellation requested."
except Exception as e:
return f"Cancel failed: {e}"
def cb_status() -> Tuple[Dict[str, Any], Dict[str, Any]]:
try:
from core.app import get_model_status, get_cache_status
return get_model_status(), get_cache_status()
except Exception as e:
return {"error": str(e)}, {"error": str(e)}
def cb_clear():
"""Clear all outputs"""
# Return blanks for (out_video, status, gen_preview, gen_path, custom_bg)
return None, "", None, "", None
# ------------------------------------------------------------------
# AI BACKGROUND
# ------------------------------------------------------------------
def cb_generate_bg(prompt_text: str, w: int, h: int, b: float, v: float, c: float):
"""Generate AI background"""
img, path = _generate_ai_background(prompt_text, int(w), int(h), b, v, c)
return img, path
def cb_use_gen_bg(gen_path: str):
"""
Use generated background as custom.
Returns the path for gr.Image to display.
"""
if gen_path and os.path.exists(gen_path):
return gen_path # gr.Image can display from path
return None
# ------------------------------------------------------------------
# PREVIEWS
# ------------------------------------------------------------------
def cb_video_changed(vid_path: str):
"""
Extract first frame of the uploaded video for a quick preview.
Returns a numpy RGB array (Gradio will display it).
"""
try:
if not vid_path:
return None
cap = cv2.VideoCapture(vid_path)
ok, frame = cap.read()
cap.release()
if not ok:
return None
# Convert BGR→RGB for correct colours in the browser
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return frame_rgb
except Exception:
return None
def cb_preset_bg_preview(style: str):
"""
Generate and display preview for preset backgrounds.
Returns image for gr.Image component to display.
"""
try:
from utils.cv_processing import create_professional_background
# Create a preview-sized version
preview_bg = create_professional_background(style, 640, 360)
return preview_bg
except Exception:
return None |