File size: 7,386 Bytes
05f03a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
End-to-End Smoke Test (SAM2 β MatAnyone β TwoStageProcessor)
- Loads a short input video
- Extracts first frame, runs SAM2 coarse mask
- Bootstraps MatAnyone and saves its refined alpha for the first frame
- Runs full TwoStageProcessor pipeline (both stages)
- Writes out:
out/sam2_mask0.png
out/matanyone_alpha0.png
out/greenscreen.mp4
out/final.mp4
- Prints a compact summary and non-zero exit on critical failure
Usage:
python tools/e2e_smoke_test.py --video path/to/clip.mp4 --bg path/to/bg.jpg
# or pass a solid background color:
python tools/e2e_smoke_test.py --video path/to/clip.mp4 --bg-color 30 30 30
"""
# --- fix OMP/BLAS early (before numpy/torch/opencv import) ---
import os
omp = os.environ.get("OMP_NUM_THREADS", "")
if not omp.strip().isdigit():
os.environ["OMP_NUM_THREADS"] = "2"
os.environ.setdefault("MKL_NUM_THREADS", "2")
os.environ.setdefault("OPENBLAS_NUM_THREADS", "2")
os.environ.setdefault("NUMEXPR_NUM_THREADS", "2")
import sys
import argparse
import time
import logging
from pathlib import Path
import cv2
import numpy as np
# Ensure repo root on path (this file lives in tools/)
REPO_ROOT = Path(__file__).resolve().parents[1]
sys.path.insert(0, str(REPO_ROOT))
from models.loaders.sam2_loader import SAM2Loader
from models.loaders.matanyone_loader import MatAnyoneLoader
from processing.two_stage.two_stage_processor import TwoStageProcessor
def _read_first_frame(video_path: str):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return None, "Could not open video"
ok, frame = cap.read()
cap.release()
if not ok or frame is None:
return None, "Could not read first frame"
return frame, None
def _ensure_dir(p: Path):
p.mkdir(parents=True, exist_ok=True)
def _save_mask_png(mask01: np.ndarray, path: Path):
m = mask01.astype(np.float32)
if m.max() <= 1.0:
m = (m * 255.0)
cv2.imwrite(str(path), np.clip(m, 0, 255).astype(np.uint8))
def _load_background(bg_path: str | None, size_wh: tuple[int, int], bg_color: tuple[int, int, int] | None):
w, h = size_wh
if bg_path:
img = cv2.imread(bg_path, cv2.IMREAD_COLOR)
if img is None:
return None, f"Failed to read background image: {bg_path}"
return cv2.resize(img, (w, h)), None
# Solid color
color = bg_color if bg_color is not None else (0, 0, 0)
canvas = np.zeros((h, w, 3), np.uint8)
canvas[:] = tuple(int(x) for x in color)
return canvas, None
def main():
ap = argparse.ArgumentParser(description="E2E smoke test for SAM2 + MatAnyone + TwoStageProcessor")
ap.add_argument("--video", required=True, help="Path to a short input video (3β10s ideal)")
ap.add_argument("--bg", default=None, help="Optional path to background image for Stage 2")
ap.add_argument("--bg-color", nargs=3, type=int, default=None, help="Solid BGR background (e.g. 30 30 30)")
ap.add_argument("--device", default="cuda", choices=["cuda", "cpu"], help="Device for models")
ap.add_argument("--model-size", default="auto", choices=["auto","tiny","small","base","large"], help="SAM2 size")
ap.add_argument("--outdir", default="out", help="Output dir")
args = ap.parse_args()
logging.basicConfig(level=logging.INFO, format="%(levelname)s - %(message)s")
log = logging.getLogger("e2e")
outdir = Path(args.outdir)
_ensure_dir(outdir)
# 1) Load first frame
frame0_bgr, err = _read_first_frame(args.video)
if err:
log.error(err)
sys.exit(2)
h0, w0 = frame0_bgr.shape[:2]
log.info(f"First frame size: {w0}x{h0}")
# 2) Load SAM2
t0 = time.time()
sam = SAM2Loader(device=args.device).load(args.model_size)
if not sam:
log.error("SAM2 failed to load")
sys.exit(3)
log.info(f"SAM2 loaded in {time.time()-t0:.2f}s")
# 3) Coarse mask from SAM2 on frame 0
sam.set_image(frame0_bgr) # accepts BGR or RGB
out = sam.predict(point_coords=None, point_labels=None)
masks = out.get("masks", None)
if masks is None or len(masks) == 0:
log.warning("SAM2 returned no masks; using fallback ones mask")
mask0 = np.ones((h0, w0), np.float32)
else:
mask0 = masks[0].astype(np.float32)
if mask0.shape != (h0, w0):
mask0 = cv2.resize(mask0, (w0, h0), interpolation=cv2.INTER_LINEAR)
_save_mask_png(mask0, outdir / "sam2_mask0.png")
log.info(f"Wrote {outdir/'sam2_mask0.png'}")
# 4) Load MatAnyone (stateful session)
t1 = time.time()
mat_session = MatAnyoneLoader(device=args.device).load()
if mat_session is None:
log.error("MatAnyone failed to load")
sys.exit(4)
log.info(f"MatAnyone loaded in {time.time()-t1:.2f}s")
# 5) Bootstrap MatAnyone on first frame (TwoStageProcessor also does this, but we test it explicitly here)
frame0_rgb = cv2.cvtColor(frame0_bgr, cv2.COLOR_BGR2RGB)
alpha0 = mat_session(frame0_rgb, mask0) # returns 2-D float32 [H, W]
_save_mask_png(alpha0, outdir / "matanyone_alpha0.png")
log.info(f"Wrote {outdir/'matanyone_alpha0.png'}")
# 6) Prepare background for Stage 2
bg_img, err = _load_background(args.bg, (w0, h0), tuple(args.bg_color) if args.bg_color else None)
if err:
log.error(err)
sys.exit(5)
# 7) End-to-end pipeline (both stages)
tsp = TwoStageProcessor(sam2_predictor=sam, matanyone_model=mat_session)
def _progress(pct: float, desc: str):
# keep console output compact
sys.stdout.write(f"\r[{pct*100:5.1f}%] {desc:60.60s}")
sys.stdout.flush()
# Write greenscreen intermediate and final composite
greenscreen_path = str(outdir / "greenscreen.mp4")
final_path = str(outdir / "final.mp4")
log.info("\nStage 1 β greenscreen...")
st1_info, st1_msg = tsp.stage1_extract_to_greenscreen(
video_path=args.video,
output_path=greenscreen_path,
key_color_mode="auto",
progress_callback=_progress,
stop_event=None,
)
print() # newline after progress
if st1_info is None:
log.error(f"Stage 1 failed: {st1_msg}")
sys.exit(6)
else:
log.info(f"Stage 1 OK: {st1_msg}")
log.info("Stage 2 β final composite...")
# We pass the ndarray bg_img directly (TwoStageProcessor accepts str or ndarray)
st2_path, st2_msg = tsp.stage2_greenscreen_to_final(
gs_path=st1_info["path"],
background=bg_img,
output_path=final_path,
chroma_settings=None,
progress_callback=_progress,
stop_event=None,
)
print()
if st2_path is None:
log.error(f"Stage 2 failed: {st2_msg}")
sys.exit(7)
else:
log.info(f"Stage 2 OK: {st2_msg}")
# 8) Summary
log.info("----- SUMMARY -----")
log.info(f"SAM2 first mask: {outdir/'sam2_mask0.png'}")
log.info(f"MatAnyone alpha 0: {outdir/'matanyone_alpha0.png'}")
log.info(f"Greenscreen video: {greenscreen_path}")
log.info(f"Final composite: {final_path}")
log.info("Smoke test completed successfully.")
return 0
if __name__ == "__main__":
try:
rc = main()
sys.exit(rc if isinstance(rc, int) else 0)
except KeyboardInterrupt:
print("\nInterrupted.")
sys.exit(130)
|