File size: 24,661 Bytes
01ce34f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 |
"""
REST API server for BackgroundFX Pro.
Provides HTTP endpoints for all processing functionality.
"""
from fastapi import FastAPI, File, UploadFile, Form, HTTPException, BackgroundTasks, Depends, status
from fastapi.responses import FileResponse, StreamingResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel, Field, validator
from typing import Dict, List, Optional, Union, Any
from enum import Enum
import asyncio
import aiofiles
from pathlib import Path
import tempfile
import shutil
import uuid
import time
from datetime import datetime, timedelta
import jwt
import cv2
import numpy as np
import io
import base64
from concurrent.futures import ThreadPoolExecutor
import redis
from contextlib import asynccontextmanager
from ..utils.logger import setup_logger
from .pipeline import ProcessingPipeline, PipelineConfig, ProcessingMode
from .video_processor import VideoProcessorAPI, StreamConfig, VideoStreamMode
from .batch_processor import BatchProcessor, BatchConfig, BatchItem, BatchPriority
logger = setup_logger(__name__)
# ============================================================================
# Configuration and Models
# ============================================================================
class ServerConfig:
"""Server configuration."""
HOST: str = "0.0.0.0"
PORT: int = 8000
UPLOAD_DIR: str = "uploads"
OUTPUT_DIR: str = "outputs"
TEMP_DIR: str = "temp"
MAX_UPLOAD_SIZE: int = 500 * 1024 * 1024 # 500MB
ALLOWED_EXTENSIONS: List[str] = [".jpg", ".jpeg", ".png", ".mp4", ".avi", ".mov"]
# Security
SECRET_KEY: str = "your-secret-key-change-in-production"
ALGORITHM: str = "HS256"
ACCESS_TOKEN_EXPIRE_MINUTES: int = 30
# Redis cache
REDIS_URL: str = "redis://localhost:6379"
CACHE_TTL: int = 3600 # 1 hour
# Rate limiting
RATE_LIMIT_REQUESTS: int = 100
RATE_LIMIT_WINDOW: int = 60 # seconds
# Processing
MAX_WORKERS: int = 4
ENABLE_GPU: bool = True
config = ServerConfig()
# ============================================================================
# Pydantic Models
# ============================================================================
class BackgroundType(str, Enum):
"""Background types."""
BLUR = "blur"
OFFICE = "office"
GRADIENT = "gradient"
NATURE = "nature"
CUSTOM = "custom"
NONE = "none"
class QualityPreset(str, Enum):
"""Quality presets."""
LOW = "low"
MEDIUM = "medium"
HIGH = "high"
ULTRA = "ultra"
class ProcessingRequest(BaseModel):
"""Base processing request."""
background: BackgroundType = BackgroundType.BLUR
background_url: Optional[str] = None
quality: QualityPreset = QualityPreset.HIGH
preserve_original: bool = False
class Config:
schema_extra = {
"example": {
"background": "office",
"quality": "high",
"preserve_original": False
}
}
class ImageProcessingRequest(ProcessingRequest):
"""Image processing request."""
resize: Optional[tuple[int, int]] = None
apply_effects: List[str] = Field(default_factory=list)
output_format: str = "png"
class VideoProcessingRequest(ProcessingRequest):
"""Video processing request."""
start_time: Optional[float] = None
end_time: Optional[float] = None
fps: Optional[float] = None
resolution: Optional[tuple[int, int]] = None
codec: str = "h264"
class BatchProcessingRequest(BaseModel):
"""Batch processing request."""
items: List[Dict[str, Any]]
parallel: bool = True
priority: str = "normal"
callback_url: Optional[str] = None
class StreamingRequest(BaseModel):
"""Streaming request."""
source: str
stream_type: str = "webcam"
output_format: str = "hls"
quality: QualityPreset = QualityPreset.MEDIUM
class ProcessingResponse(BaseModel):
"""Processing response."""
job_id: str
status: str
progress: float = 0.0
message: Optional[str] = None
result_url: Optional[str] = None
metadata: Dict[str, Any] = Field(default_factory=dict)
created_at: datetime = Field(default_factory=datetime.now)
completed_at: Optional[datetime] = None
class JobStatus(BaseModel):
"""Job status response."""
job_id: str
status: str
progress: float
current_stage: Optional[str] = None
time_elapsed: float
time_remaining: Optional[float] = None
errors: List[str] = Field(default_factory=list)
# ============================================================================
# Job Management
# ============================================================================
class JobManager:
"""Manage processing jobs."""
def __init__(self):
self.jobs: Dict[str, ProcessingResponse] = {}
self.executor = ThreadPoolExecutor(max_workers=config.MAX_WORKERS)
self.redis_client = None
try:
self.redis_client = redis.from_url(config.REDIS_URL)
except:
logger.warning("Redis not available, using in-memory storage")
def create_job(self) -> str:
"""Create new job ID."""
job_id = str(uuid.uuid4())
self.jobs[job_id] = ProcessingResponse(
job_id=job_id,
status="pending"
)
return job_id
def update_job(self, job_id: str, **kwargs):
"""Update job status."""
if job_id in self.jobs:
for key, value in kwargs.items():
if hasattr(self.jobs[job_id], key):
setattr(self.jobs[job_id], key, value)
# Store in Redis if available
if self.redis_client:
try:
self.redis_client.setex(
f"job:{job_id}",
config.CACHE_TTL,
self.jobs[job_id].json()
)
except:
pass
def get_job(self, job_id: str) -> Optional[ProcessingResponse]:
"""Get job status."""
# Check memory first
if job_id in self.jobs:
return self.jobs[job_id]
# Check Redis
if self.redis_client:
try:
data = self.redis_client.get(f"job:{job_id}")
if data:
return ProcessingResponse.parse_raw(data)
except:
pass
return None
# ============================================================================
# FastAPI Application
# ============================================================================
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Application lifespan manager."""
# Startup
logger.info("Starting BackgroundFX Pro API Server")
# Create directories
for dir_path in [config.UPLOAD_DIR, config.OUTPUT_DIR, config.TEMP_DIR]:
Path(dir_path).mkdir(parents=True, exist_ok=True)
# Initialize processors
app.state.pipeline = ProcessingPipeline(
PipelineConfig(use_gpu=config.ENABLE_GPU)
)
app.state.video_processor = VideoProcessorAPI()
app.state.batch_processor = BatchProcessor()
app.state.job_manager = JobManager()
yield
# Shutdown
logger.info("Shutting down BackgroundFX Pro API Server")
app.state.pipeline.shutdown()
app.state.video_processor.cleanup()
app.state.batch_processor.cleanup()
app = FastAPI(
title="BackgroundFX Pro API",
description="Professional background removal and replacement API",
version="1.0.0",
lifespan=lifespan
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Configure appropriately for production
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# ============================================================================
# Authentication
# ============================================================================
security = HTTPBearer()
def create_access_token(data: dict) -> str:
"""Create JWT access token."""
to_encode = data.copy()
expire = datetime.utcnow() + timedelta(minutes=config.ACCESS_TOKEN_EXPIRE_MINUTES)
to_encode.update({"exp": expire})
return jwt.encode(to_encode, config.SECRET_KEY, algorithm=config.ALGORITHM)
def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)) -> str:
"""Verify JWT token."""
token = credentials.credentials
try:
payload = jwt.decode(token, config.SECRET_KEY, algorithms=[config.ALGORITHM])
username: str = payload.get("sub")
if username is None:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid authentication credentials",
)
return username
except jwt.PyJWTError:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid authentication credentials",
)
# ============================================================================
# Health and Status Endpoints
# ============================================================================
@app.get("/")
async def root():
"""Root endpoint."""
return {
"name": "BackgroundFX Pro API",
"version": "1.0.0",
"status": "running",
"endpoints": {
"health": "/health",
"docs": "/docs",
"process_image": "/api/v1/process/image",
"process_video": "/api/v1/process/video",
"batch": "/api/v1/batch",
"stream": "/api/v1/stream"
}
}
@app.get("/health")
async def health_check():
"""Health check endpoint."""
return {
"status": "healthy",
"timestamp": datetime.now().isoformat(),
"services": {
"pipeline": "ready",
"video_processor": "ready",
"batch_processor": "ready",
"redis": "connected" if app.state.job_manager.redis_client else "disconnected"
}
}
@app.get("/api/v1/stats")
async def get_statistics(current_user: str = Depends(verify_token)):
"""Get processing statistics."""
return {
"pipeline": app.state.pipeline.get_statistics(),
"video": app.state.video_processor.get_stats(),
"batch": app.state.batch_processor.get_status()
}
# ============================================================================
# Image Processing Endpoints
# ============================================================================
@app.post("/api/v1/process/image", response_model=ProcessingResponse)
async def process_image(
background_tasks: BackgroundTasks,
file: UploadFile = File(...),
request: ImageProcessingRequest = Depends(),
current_user: str = Depends(verify_token)
):
"""Process a single image."""
# Validate file
if not file.filename.lower().endswith(tuple(config.ALLOWED_EXTENSIONS)):
raise HTTPException(400, "Invalid file format")
if file.size > config.MAX_UPLOAD_SIZE:
raise HTTPException(413, "File too large")
# Create job
job_id = app.state.job_manager.create_job()
# Save uploaded file
upload_path = Path(config.UPLOAD_DIR) / f"{job_id}_{file.filename}"
async with aiofiles.open(upload_path, 'wb') as f:
content = await file.read()
await f.write(content)
# Process in background
background_tasks.add_task(
process_image_task,
app.state,
job_id,
str(upload_path),
request
)
return ProcessingResponse(
job_id=job_id,
status="processing",
message="Image processing started"
)
async def process_image_task(app_state, job_id: str, input_path: str, request: ImageProcessingRequest):
"""Background task for image processing."""
try:
# Update job status
app_state.job_manager.update_job(job_id, status="processing", progress=0.1)
# Load image
image = cv2.imread(input_path)
# Prepare background
background = None
if request.background == BackgroundType.CUSTOM and request.background_url:
# Download custom background
# ... implementation ...
pass
elif request.background != BackgroundType.NONE:
background = request.background.value
# Configure pipeline
config = PipelineConfig(
quality_preset=request.quality.value,
apply_effects=request.apply_effects
)
# Process image
result = app_state.pipeline.process_image(image, background)
if result.success:
# Save output
output_filename = f"{job_id}_output.{request.output_format}"
output_path = Path(config.OUTPUT_DIR) / output_filename
cv2.imwrite(str(output_path), result.output_image)
# Update job
app_state.job_manager.update_job(
job_id,
status="completed",
progress=1.0,
result_url=f"/api/v1/download/{output_filename}",
completed_at=datetime.now(),
metadata={
"quality_score": result.quality_score,
"processing_time": result.processing_time
}
)
else:
app_state.job_manager.update_job(
job_id,
status="failed",
message="Processing failed"
)
except Exception as e:
logger.error(f"Image processing failed for job {job_id}: {e}")
app_state.job_manager.update_job(
job_id,
status="failed",
message=str(e)
)
# ============================================================================
# Video Processing Endpoints
# ============================================================================
@app.post("/api/v1/process/video", response_model=ProcessingResponse)
async def process_video(
background_tasks: BackgroundTasks,
file: UploadFile = File(...),
request: VideoProcessingRequest = Depends(),
current_user: str = Depends(verify_token)
):
"""Process a video file."""
# Validate file
if not file.filename.lower().endswith(('.mp4', '.avi', '.mov', '.mkv')):
raise HTTPException(400, "Invalid video format")
# Create job
job_id = app_state.job_manager.create_job()
# Save uploaded file
upload_path = Path(config.UPLOAD_DIR) / f"{job_id}_{file.filename}"
async with aiofiles.open(upload_path, 'wb') as f:
content = await file.read()
await f.write(content)
# Process in background
background_tasks.add_task(
process_video_task,
app.state,
job_id,
str(upload_path),
request
)
return ProcessingResponse(
job_id=job_id,
status="processing",
message="Video processing started"
)
async def process_video_task(app_state, job_id: str, input_path: str, request: VideoProcessingRequest):
"""Background task for video processing."""
try:
# Progress callback
def progress_callback(progress: float, info: Dict):
app_state.job_manager.update_job(
job_id,
progress=progress,
metadata=info
)
# Process video
output_path = Path(config.OUTPUT_DIR) / f"{job_id}_output.mp4"
stats = await app_state.video_processor.process_video_async(
input_path,
str(output_path),
background=request.background.value if request.background != BackgroundType.NONE else None,
progress_callback=progress_callback
)
# Update job
app_state.job_manager.update_job(
job_id,
status="completed",
progress=1.0,
result_url=f"/api/v1/download/{output_path.name}",
completed_at=datetime.now(),
metadata={
"frames_processed": stats.frames_processed,
"processing_fps": stats.processing_fps,
"avg_quality": stats.avg_quality_score
}
)
except Exception as e:
logger.error(f"Video processing failed for job {job_id}: {e}")
app_state.job_manager.update_job(
job_id,
status="failed",
message=str(e)
)
# ============================================================================
# Batch Processing Endpoints
# ============================================================================
@app.post("/api/v1/batch", response_model=ProcessingResponse)
async def process_batch(
background_tasks: BackgroundTasks,
request: BatchProcessingRequest,
current_user: str = Depends(verify_token)
):
"""Process multiple files in batch."""
# Create job
job_id = app.state.job_manager.create_job()
# Process in background
background_tasks.add_task(
process_batch_task,
app.state,
job_id,
request
)
return ProcessingResponse(
job_id=job_id,
status="processing",
message=f"Batch processing started for {len(request.items)} items"
)
async def process_batch_task(app_state, job_id: str, request: BatchProcessingRequest):
"""Background task for batch processing."""
try:
# Convert request items to BatchItems
batch_items = []
for item_data in request.items:
batch_item = BatchItem(
id=item_data.get('id', str(uuid.uuid4())),
input_path=item_data['input_path'],
output_path=item_data['output_path'],
file_type=item_data.get('file_type', 'image'),
priority=BatchPriority[request.priority.upper()],
background=item_data.get('background')
)
batch_items.append(batch_item)
# Progress callback
def progress_callback(progress: float, info: Dict):
app_state.job_manager.update_job(
job_id,
progress=progress,
metadata=info
)
# Configure batch processor
batch_config = BatchConfig(
progress_callback=progress_callback,
max_workers=config.MAX_WORKERS if request.parallel else 1
)
processor = BatchProcessor(batch_config)
report = processor.process_batch(batch_items)
# Update job
app_state.job_manager.update_job(
job_id,
status="completed",
progress=1.0,
completed_at=datetime.now(),
metadata={
"total_items": report.total_items,
"successful_items": report.successful_items,
"failed_items": report.failed_items,
"avg_quality": report.quality_metrics.get('avg_quality', 0)
}
)
# Callback if provided
if request.callback_url:
# Send completion callback
# ... implementation ...
pass
except Exception as e:
logger.error(f"Batch processing failed for job {job_id}: {e}")
app_state.job_manager.update_job(
job_id,
status="failed",
message=str(e)
)
# ============================================================================
# Streaming Endpoints
# ============================================================================
@app.post("/api/v1/stream/start")
async def start_stream(
request: StreamingRequest,
current_user: str = Depends(verify_token)
):
"""Start a streaming session."""
# Configure streaming
stream_config = StreamConfig(
source=request.source,
stream_mode=VideoStreamMode[request.stream_type.upper()],
output_format=request.output_format,
output_path=f"{config.OUTPUT_DIR}/stream_{uuid.uuid4()}"
)
# Start streaming
success = app.state.video_processor.start_stream_processing(
stream_config,
background=None # Configure as needed
)
if success:
return {
"status": "streaming",
"stream_url": f"/api/v1/stream/live/{stream_config.output_path}",
"message": "Streaming started"
}
else:
raise HTTPException(500, "Failed to start streaming")
@app.get("/api/v1/stream/stop")
async def stop_stream(current_user: str = Depends(verify_token)):
"""Stop streaming session."""
app.state.video_processor.stop_stream_processing()
return {"status": "stopped", "message": "Streaming stopped"}
@app.get("/api/v1/stream/preview")
async def get_stream_preview(current_user: str = Depends(verify_token)):
"""Get stream preview frame."""
frame = app.state.video_processor.get_preview_frame()
if frame is not None:
# Convert to JPEG
_, buffer = cv2.imencode('.jpg', frame)
return StreamingResponse(
io.BytesIO(buffer),
media_type="image/jpeg"
)
else:
raise HTTPException(404, "No preview available")
# ============================================================================
# Job Management Endpoints
# ============================================================================
@app.get("/api/v1/job/{job_id}", response_model=ProcessingResponse)
async def get_job_status(
job_id: str,
current_user: str = Depends(verify_token)
):
"""Get job status."""
job = app.state.job_manager.get_job(job_id)
if job:
return job
else:
raise HTTPException(404, "Job not found")
@app.get("/api/v1/jobs")
async def list_jobs(
current_user: str = Depends(verify_token),
limit: int = 10,
offset: int = 0
):
"""List recent jobs."""
jobs = list(app.state.job_manager.jobs.values())
return {
"total": len(jobs),
"jobs": jobs[offset:offset + limit]
}
@app.delete("/api/v1/job/{job_id}")
async def cancel_job(
job_id: str,
current_user: str = Depends(verify_token)
):
"""Cancel a job."""
# Implementation would depend on your cancellation mechanism
app.state.job_manager.update_job(job_id, status="cancelled")
return {"message": "Job cancelled"}
# ============================================================================
# Download Endpoints
# ============================================================================
@app.get("/api/v1/download/{filename}")
async def download_file(
filename: str,
current_user: str = Depends(verify_token)
):
"""Download processed file."""
file_path = Path(config.OUTPUT_DIR) / filename
if file_path.exists():
return FileResponse(
path=file_path,
filename=filename,
media_type='application/octet-stream'
)
else:
raise HTTPException(404, "File not found")
# ============================================================================
# WebSocket for Real-time Updates
# ============================================================================
from fastapi import WebSocket, WebSocketDisconnect
@app.websocket("/ws/job/{job_id}")
async def websocket_job_updates(websocket: WebSocket, job_id: str):
"""WebSocket for real-time job updates."""
await websocket.accept()
try:
while True:
# Get job status
job = app.state.job_manager.get_job(job_id)
if job:
await websocket.send_json(job.dict())
if job.status in ["completed", "failed", "cancelled"]:
break
await asyncio.sleep(1)
except WebSocketDisconnect:
logger.info(f"WebSocket disconnected for job {job_id}")
# ============================================================================
# Run Server
# ============================================================================
if __name__ == "__main__":
import uvicorn
uvicorn.run(
app,
host=config.HOST,
port=config.PORT,
log_level="info"
) |