File size: 29,239 Bytes
94a9c1b
 
 
 
 
 
 
 
 
 
 
 
 
 
cb75d8c
94a9c1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
"""
Advanced hair segmentation pipeline for BackgroundFX Pro.
Specialized module for accurate hair detection and segmentation.
"""

import numpy as np
import cv2
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Dict, List, Optional, Tuple, Any
from dataclasses import dataclass
import logging
from scipy import ndimage
# from skimage import morphology, filters

logger = logging.getLogger(__name__)


@dataclass
class HairConfig:
    """Configuration for hair segmentation."""
    min_hair_confidence: float = 0.6
    edge_sensitivity: float = 0.8
    strand_detection: bool = True
    strand_thickness: int = 2
    asymmetry_correction: bool = True
    max_asymmetry_ratio: float = 1.5
    use_deep_features: bool = False
    refinement_iterations: int = 3
    alpha_matting: bool = True
    preserve_details: bool = True
    smoothing_sigma: float = 1.0


class HairSegmentationPipeline:
    """Complete hair segmentation pipeline."""
    
    def __init__(self, config: Optional[HairConfig] = None):
        self.config = config or HairConfig()
        self.mask_refiner = HairMaskRefiner(config)
        self.asymmetry_detector = AsymmetryDetector(config)
        self.edge_enhancer = HairEdgeEnhancer(config)
        
        # Optional deep learning model
        self.deep_model = None
        if self.config.use_deep_features:
            self.deep_model = HairNet()
    
    def segment(self, image: np.ndarray, 
               initial_mask: Optional[np.ndarray] = None,
               prompts: Optional[Dict] = None) -> Dict[str, np.ndarray]:
        """
        Perform complete hair segmentation.
        
        Returns:
            Dictionary containing:
            - 'mask': Final hair mask
            - 'confidence': Confidence map
            - 'strands': Fine hair strands mask
            - 'edges': Hair edge map
        """
        h, w = image.shape[:2]
        
        # 1. Initial hair detection
        hair_regions = self._detect_hair_regions(image, initial_mask)
        
        # 2. Deep feature extraction (if enabled)
        if self.deep_model and self.config.use_deep_features:
            deep_features = self._extract_deep_features(image)
            hair_regions = self._enhance_with_deep_features(hair_regions, deep_features)
        
        # 3. Detect and correct asymmetry
        if self.config.asymmetry_correction:
            asymmetry_info = self.asymmetry_detector.detect(hair_regions, image)
            if asymmetry_info['is_asymmetric']:
                logger.info(f"Correcting hair asymmetry: {asymmetry_info['score']:.3f}")
                hair_regions = self.asymmetry_detector.correct(
                    hair_regions, asymmetry_info
                )
        
        # 4. Detect fine hair strands
        strands_mask = None
        if self.config.strand_detection:
            strands_mask = self._detect_hair_strands(image, hair_regions)
            # Integrate strands into main mask
            hair_regions = self._integrate_strands(hair_regions, strands_mask)
        
        # 5. Refine mask
        refined_mask = self.mask_refiner.refine(image, hair_regions)
        
        # 6. Edge enhancement
        edges = self.edge_enhancer.enhance(refined_mask, image)
        refined_mask = self._apply_edge_enhancement(refined_mask, edges)
        
        # 7. Alpha matting (if enabled)
        if self.config.alpha_matting:
            refined_mask = self._apply_alpha_matting(image, refined_mask)
        
        # 8. Final smoothing
        final_mask = self._final_smoothing(refined_mask)
        
        # 9. Compute confidence
        confidence = self._compute_confidence(final_mask, initial_mask)
        
        return {
            'mask': final_mask,
            'confidence': confidence,
            'strands': strands_mask,
            'edges': edges
        }
    
    def _detect_hair_regions(self, image: np.ndarray,
                            initial_mask: Optional[np.ndarray]) -> np.ndarray:
        """Detect hair regions using multiple cues."""
        # Color-based detection
        color_mask = self._detect_by_color(image)
        
        # Texture-based detection
        texture_mask = self._detect_by_texture(image)
        
        # Combine cues
        hair_probability = 0.6 * color_mask + 0.4 * texture_mask
        
        # If initial mask provided, constrain to it
        if initial_mask is not None:
            # Dilate initial mask slightly to catch hair edges
            kernel = np.ones((15, 15), np.uint8)
            dilated_initial = cv2.dilate(initial_mask, kernel, iterations=2)
            hair_probability *= dilated_initial
        
        # Threshold
        hair_mask = (hair_probability > self.config.min_hair_confidence).astype(np.float32)
        
        # Clean up small regions
        hair_mask = self._remove_small_regions(hair_mask)
        
        return hair_mask
    
    def _detect_by_color(self, image: np.ndarray) -> np.ndarray:
        """Detect hair by color characteristics."""
        # Convert to multiple color spaces
        hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
        lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)
        ycrcb = cv2.cvtColor(image, cv2.COLOR_BGR2YCrCb)
        
        masks = []
        
        # Black hair detection
        black_mask = cv2.inRange(hsv, (0, 0, 0), (180, 255, 30))
        masks.append(black_mask)
        
        # Brown hair detection
        brown_mask = cv2.inRange(hsv, (10, 20, 20), (20, 255, 100))
        masks.append(brown_mask)
        
        # Blonde hair detection
        blonde_mask = cv2.inRange(hsv, (15, 30, 50), (25, 255, 200))
        masks.append(blonde_mask)
        
        # Red/Auburn hair detection
        red_mask = cv2.inRange(hsv, (0, 50, 50), (10, 255, 150))
        auburn_mask = cv2.inRange(hsv, (160, 50, 50), (180, 255, 150))
        masks.append(cv2.bitwise_or(red_mask, auburn_mask))
        
        # Gray/White hair detection
        gray_mask = cv2.inRange(hsv, (0, 0, 50), (180, 30, 200))
        masks.append(gray_mask)
        
        # Combine all masks
        combined = np.zeros_like(masks[0], dtype=np.float32)
        for mask in masks:
            combined = np.maximum(combined, mask.astype(np.float32) / 255.0)
        
        # Smooth the result
        combined = cv2.GaussianBlur(combined, (7, 7), 2.0)
        
        return combined
    
    def _detect_by_texture(self, image: np.ndarray) -> np.ndarray:
        """Detect hair by texture characteristics."""
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
        
        # Multi-scale texture analysis
        texture_responses = []
        
        # Gabor filters for different orientations and scales
        for scale in [3, 5, 7]:
            for angle in [0, 30, 60, 90, 120, 150]:
                theta = np.deg2rad(angle)
                kernel = cv2.getGaborKernel(
                    (21, 21), scale, theta, 10.0, 0.5, 0, ktype=cv2.CV_32F
                )
                response = cv2.filter2D(gray, cv2.CV_32F, kernel)
                texture_responses.append(np.abs(response))
        
        # Combine responses
        texture_map = np.mean(texture_responses, axis=0)
        
        # Normalize
        texture_map = (texture_map - np.min(texture_map)) / (np.max(texture_map) - np.min(texture_map) + 1e-6)
        
        # Hair tends to have consistent directional texture
        # Compute local coherence
        coherence = self._compute_texture_coherence(texture_responses)
        
        # Combine texture magnitude and coherence
        hair_texture = texture_map * coherence
        
        return hair_texture
    
    def _compute_texture_coherence(self, responses: List[np.ndarray]) -> np.ndarray:
        """Compute texture coherence (consistency of orientation)."""
        if len(responses) < 2:
            return np.ones_like(responses[0])
        
        # Compute variance across orientations
        response_stack = np.stack(responses, axis=0)
        variance = np.var(response_stack, axis=0)
        mean = np.mean(response_stack, axis=0) + 1e-6
        
        # Low variance relative to mean = high coherence
        coherence = 1.0 - np.minimum(variance / mean, 1.0)
        
        return coherence
    
    def _detect_hair_strands(self, image: np.ndarray,
                            hair_mask: np.ndarray) -> np.ndarray:
        """Detect fine hair strands."""
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
        
        # Edge detection with low threshold for fine details
        edges = cv2.Canny(gray, 10, 30)
        
        # Line detection using Hough transform
        lines = cv2.HoughLinesP(
            edges, 1, np.pi/180, threshold=20,
            minLineLength=10, maxLineGap=5
        )
        
        # Create strand mask
        strand_mask = np.zeros_like(gray, dtype=np.float32)
        
        if lines is not None:
            for line in lines:
                x1, y1, x2, y2 = line[0]
                
                # Check if line is near hair region
                mid_x, mid_y = (x1 + x2) // 2, (y1 + y2) // 2
                
                # Dilated hair mask for proximity check
                kernel = np.ones((15, 15), np.uint8)
                dilated_hair = cv2.dilate(hair_mask, kernel, iterations=1)
                
                if dilated_hair[mid_y, mid_x] > 0:
                    # Draw line as potential hair strand
                    cv2.line(strand_mask, (x1, y1), (x2, y2), 1.0, self.config.strand_thickness)
        
        # Ridge detection for curved strands
        ridges = filters.frangi(gray, sigmas=range(1, 4))
        ridges = (ridges - np.min(ridges)) / (np.max(ridges) - np.min(ridges) + 1e-6)
        
        # Combine with line detection
        strand_mask = np.maximum(strand_mask, ridges * dilated_hair)
        
        # Threshold and clean
        strand_mask = (strand_mask > 0.3).astype(np.float32)
        strand_mask = cv2.morphologyEx(strand_mask, cv2.MORPH_CLOSE, np.ones((3, 3)))
        
        return strand_mask
    
    def _integrate_strands(self, hair_mask: np.ndarray,
                          strands_mask: np.ndarray) -> np.ndarray:
        """Integrate detected strands into main hair mask."""
        if strands_mask is None:
            return hair_mask
        
        # Add strands to hair mask
        integrated = np.maximum(hair_mask, strands_mask * 0.8)
        
        # Smooth the integration
        integrated = cv2.GaussianBlur(integrated, (5, 5), 1.0)
        
        return np.clip(integrated, 0, 1)
    
    def _extract_deep_features(self, image: np.ndarray) -> torch.Tensor:
        """Extract deep features using neural network."""
        if not self.deep_model:
            return None
        
        # Prepare input
        input_tensor = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0).float() / 255.0
        
        # Extract features
        with torch.no_grad():
            features = self.deep_model.extract_features(input_tensor)
        
        return features
    
    def _enhance_with_deep_features(self, mask: np.ndarray,
                                   features: torch.Tensor) -> np.ndarray:
        """Enhance mask using deep features."""
        if features is None:
            return mask
        
        # Process features to get hair probability
        hair_prob = self.deep_model.process_features(features)
        hair_prob = hair_prob.squeeze().cpu().numpy()
        
        # Resize to match mask
        hair_prob = cv2.resize(hair_prob, (mask.shape[1], mask.shape[0]))
        
        # Combine with existing mask
        enhanced = 0.7 * mask + 0.3 * hair_prob
        
        return np.clip(enhanced, 0, 1)
    
    def _apply_alpha_matting(self, image: np.ndarray,
                           mask: np.ndarray) -> np.ndarray:
        """Apply alpha matting for refined transparency."""
        # Simple alpha matting using guided filter
        # For production, consider using more advanced methods like Deep Image Matting
        
        # Convert image to grayscale for guidance
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
        gray = gray.astype(np.float32) / 255.0
        
        # Guided filter for alpha matting
        radius = 20
        epsilon = 0.01
        
        alpha = self._guided_filter(mask, gray, radius, epsilon)
        
        return np.clip(alpha, 0, 1)
    
    def _guided_filter(self, p: np.ndarray, I: np.ndarray,
                      radius: int, epsilon: float) -> np.ndarray:
        """Guided filter implementation."""
        mean_I = cv2.boxFilter(I, cv2.CV_32F, (radius, radius))
        mean_p = cv2.boxFilter(p, cv2.CV_32F, (radius, radius))
        mean_Ip = cv2.boxFilter(I * p, cv2.CV_32F, (radius, radius))
        cov_Ip = mean_Ip - mean_I * mean_p
        
        mean_II = cv2.boxFilter(I * I, cv2.CV_32F, (radius, radius))
        var_I = mean_II - mean_I * mean_I
        
        a = cov_Ip / (var_I + epsilon)
        b = mean_p - a * mean_I
        
        mean_a = cv2.boxFilter(a, cv2.CV_32F, (radius, radius))
        mean_b = cv2.boxFilter(b, cv2.CV_32F, (radius, radius))
        
        q = mean_a * I + mean_b
        
        return q
    
    def _apply_edge_enhancement(self, mask: np.ndarray,
                               edges: np.ndarray) -> np.ndarray:
        """Apply edge enhancement to mask."""
        # Strengthen mask at detected edges
        edge_weight = 0.3
        enhanced = mask + edge_weight * edges
        
        return np.clip(enhanced, 0, 1)
    
    def _final_smoothing(self, mask: np.ndarray) -> np.ndarray:
        """Apply final smoothing while preserving details."""
        if self.config.preserve_details:
            # Edge-preserving smoothing
            smoothed = cv2.bilateralFilter(
                (mask * 255).astype(np.uint8), 9, 75, 75
            ) / 255.0
        else:
            # Simple Gaussian smoothing
            smoothed = cv2.GaussianBlur(
                mask, (5, 5), self.config.smoothing_sigma
            )
        
        return smoothed
    
    def _compute_confidence(self, mask: np.ndarray,
                          initial_mask: Optional[np.ndarray]) -> np.ndarray:
        """Compute confidence map for the segmentation."""
        # Base confidence from mask values
        # Values close to 0 or 1 are more confident
        distance_from_middle = np.abs(mask - 0.5) * 2
        confidence = distance_from_middle
        
        # If initial mask provided, boost confidence in agreement areas
        if initial_mask is not None:
            agreement = 1 - np.abs(mask - initial_mask)
            confidence = 0.7 * confidence + 0.3 * agreement
        
        return np.clip(confidence, 0, 1)
    
    def _remove_small_regions(self, mask: np.ndarray,
                             min_size: int = 100) -> np.ndarray:
        """Remove small disconnected regions."""
        # Convert to binary
        binary = (mask > 0.5).astype(np.uint8)
        
        # Find connected components
        num_labels, labels, stats, _ = cv2.connectedComponentsWithStats(binary)
        
        # Remove small components
        cleaned = np.zeros_like(mask)
        for i in range(1, num_labels):
            if stats[i, cv2.CC_STAT_AREA] >= min_size:
                cleaned[labels == i] = mask[labels == i]
        
        return cleaned


class HairMaskRefiner:
    """Refines hair masks for better quality."""
    
    def __init__(self, config: HairConfig):
        self.config = config
        
    def refine(self, image: np.ndarray, mask: np.ndarray) -> np.ndarray:
        """Refine hair mask through multiple iterations."""
        refined = mask.copy()
        
        for iteration in range(self.config.refinement_iterations):
            # Progressive refinement
            refined = self._refine_iteration(image, refined, iteration)
        
        return refined
    
    def _refine_iteration(self, image: np.ndarray, mask: np.ndarray,
                         iteration: int) -> np.ndarray:
        """Single refinement iteration."""
        # Morphological operations
        kernel_size = 5 - iteration  # Decreasing kernel size
        kernel = cv2.getStructuringElement(
            cv2.MORPH_ELLIPSE, (kernel_size, kernel_size)
        )
        
        # Close gaps
        refined = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
        
        # Remove noise
        refined = cv2.morphologyEx(refined, cv2.MORPH_OPEN, kernel)
        
        # Smooth boundaries
        refined = cv2.GaussianBlur(refined, (3, 3), 0.5)
        
        return refined


class AsymmetryDetector:
    """Detects and corrects asymmetry in hair masks."""
    
    def __init__(self, config: HairConfig):
        self.config = config
        
    def detect(self, mask: np.ndarray, image: np.ndarray) -> Dict[str, Any]:
        """Detect asymmetry in hair mask."""
        h, w = mask.shape[:2]
        
        # Find vertical center line
        center_x = self._find_center_line(mask)
        
        # Split into left and right
        left_mask = mask[:, :center_x]
        right_mask = mask[:, center_x:]
        
        # Make same width for comparison
        min_width = min(left_mask.shape[1], right_mask.shape[1])
        left_mask = left_mask[:, -min_width:] if left_mask.shape[1] > min_width else left_mask
        right_mask = right_mask[:, :min_width] if right_mask.shape[1] > min_width else right_mask
        
        # Flip right for comparison
        right_flipped = np.fliplr(right_mask)
        
        # Compute asymmetry metrics
        pixel_diff = np.mean(np.abs(left_mask - right_flipped))
        
        # Area comparison
        left_area = np.sum(left_mask > 0.5)
        right_area = np.sum(right_mask > 0.5)
        area_ratio = max(left_area, right_area) / (min(left_area, right_area) + 1e-6)
        
        # Edge comparison
        left_edges = cv2.Canny((left_mask * 255).astype(np.uint8), 50, 150)
        right_edges = cv2.Canny((right_mask * 255).astype(np.uint8), 50, 150)
        right_edges_flipped = np.fliplr(right_edges)
        edge_diff = np.mean(np.abs(left_edges - right_edges_flipped)) / 255.0
        
        # Overall asymmetry score
        asymmetry_score = 0.4 * pixel_diff + 0.3 * (area_ratio - 1.0) / 2.0 + 0.3 * edge_diff
        
        is_asymmetric = (asymmetry_score > self.config.symmetry_threshold or 
                        area_ratio > self.config.max_asymmetry_ratio)
        
        return {
            'is_asymmetric': is_asymmetric,
            'score': asymmetry_score,
            'center_x': center_x,
            'area_ratio': area_ratio,
            'pixel_diff': pixel_diff,
            'edge_diff': edge_diff
        }
    
    def correct(self, mask: np.ndarray, asymmetry_info: Dict[str, Any]) -> np.ndarray:
        """Correct detected asymmetry."""
        center_x = asymmetry_info['center_x']
        h, w = mask.shape[:2]
        
        # Split mask
        left_mask = mask[:, :center_x]
        right_mask = mask[:, center_x:]
        
        # Determine which side is more reliable
        left_density = np.mean(left_mask > 0.5)
        right_density = np.mean(right_mask > 0.5)
        
        # Use denser side as reference (usually more complete)
        if left_density > right_density:
            # Mirror left to right
            reference = left_mask
            mirrored = np.fliplr(reference)
            
            # Blend with original right
            corrected_right = 0.7 * mirrored[:, :right_mask.shape[1]] + 0.3 * right_mask
            
            # Reconstruct
            corrected = np.zeros_like(mask)
            corrected[:, :center_x] = left_mask
            corrected[:, center_x:center_x + corrected_right.shape[1]] = corrected_right
        else:
            # Mirror right to left
            reference = right_mask
            mirrored = np.fliplr(reference)
            
            # Blend with original left
            corrected_left = 0.7 * mirrored[:, -left_mask.shape[1]:] + 0.3 * left_mask
            
            # Reconstruct
            corrected = np.zeros_like(mask)
            corrected[:, :center_x] = corrected_left
            corrected[:, center_x:] = right_mask
        
        # Smooth the center seam
        seam_width = 10
        seam_start = max(0, center_x - seam_width)
        seam_end = min(w, center_x + seam_width)
        corrected[:, seam_start:seam_end] = cv2.GaussianBlur(
            corrected[:, seam_start:seam_end], (7, 1), 2.0
        )
        
        return corrected
    
    def _find_center_line(self, mask: np.ndarray) -> int:
        """Find the vertical center line of the object."""
        # Use center of mass
        mask_binary = (mask > 0.5).astype(np.uint8)
        moments = cv2.moments(mask_binary)
        
        if moments['m00'] > 0:
            cx = int(moments['m10'] / moments['m00'])
        else:
            # Fallback to image center
            cx = mask.shape[1] // 2
        
        return cx


class HairEdgeEnhancer:
    """Enhances edges in hair masks."""
    
    def __init__(self, config: HairConfig):
        self.config = config
        
    def enhance(self, mask: np.ndarray, image: np.ndarray) -> np.ndarray:
        """Enhance hair edges for better quality."""
        # Detect edges in image
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
        
        # Multi-scale edge detection
        edges = self._multi_scale_edges(gray)
        
        # Detect edges in mask
        mask_edges = cv2.Canny((mask * 255).astype(np.uint8), 30, 100) / 255.0
        
        # Find hair-specific edges
        hair_edges = self._detect_hair_edges(gray, mask)
        
        # Combine all edge information
        combined_edges = np.maximum(edges * 0.3, np.maximum(mask_edges * 0.3, hair_edges * 0.4))
        
        # Apply non-maximum suppression
        combined_edges = self._non_max_suppression(combined_edges)
        
        return combined_edges
    
    def _multi_scale_edges(self, gray: np.ndarray) -> np.ndarray:
        """Detect edges at multiple scales."""
        edges_list = []
        
        for scale in [1, 2, 3]:
            # Resize image
            if scale > 1:
                scaled = cv2.resize(gray, None, fx=1/scale, fy=1/scale)
            else:
                scaled = gray
            
            # Detect edges
            edges = cv2.Canny(scaled, 30 * scale, 80 * scale)
            
            # Resize back
            if scale > 1:
                edges = cv2.resize(edges, (gray.shape[1], gray.shape[0]))
            
            edges_list.append(edges / 255.0)
        
        # Combine scales
        combined = np.mean(edges_list, axis=0)
        
        return combined
    
    def _detect_hair_edges(self, gray: np.ndarray, mask: np.ndarray) -> np.ndarray:
        """Detect edges specific to hair texture."""
        # Use Gabor filters to detect hair-like textures
        hair_edges = np.zeros_like(gray, dtype=np.float32)
        
        # Multiple orientations
        for angle in range(0, 180, 30):
            theta = np.deg2rad(angle)
            kernel = cv2.getGaborKernel(
                (11, 11), 3.0, theta, 8.0, 0.5, 0, ktype=cv2.CV_32F
            )
            
            filtered = cv2.filter2D(gray, cv2.CV_32F, kernel)
            hair_edges = np.maximum(hair_edges, np.abs(filtered))
        
        # Normalize
        hair_edges = hair_edges / (np.max(hair_edges) + 1e-6)
        
        # Mask to hair regions
        hair_edges *= mask
        
        # Threshold
        hair_edges = (hair_edges > self.config.edge_sensitivity * 0.5).astype(np.float32)
        
        return hair_edges
    
    def _non_max_suppression(self, edges: np.ndarray) -> np.ndarray:
        """Apply non-maximum suppression to edges."""
        # Compute gradients
        dx = cv2.Sobel(edges, cv2.CV_32F, 1, 0, ksize=3)
        dy = cv2.Sobel(edges, cv2.CV_32F, 0, 1, ksize=3)
        
        # Gradient magnitude and direction
        magnitude = np.sqrt(dx**2 + dy**2)
        direction = np.arctan2(dy, dx)
        
        # Quantize directions to 4 main orientations
        direction = np.rad2deg(direction)
        direction[direction < 0] += 180
        
        # Non-maximum suppression
        suppressed = np.zeros_like(magnitude)
        
        for i in range(1, magnitude.shape[0] - 1):
            for j in range(1, magnitude.shape[1] - 1):
                angle = direction[i, j]
                mag = magnitude[i, j]
                
                # Determine neighbors based on gradient direction
                if (0 <= angle < 22.5) or (157.5 <= angle <= 180):
                    # Horizontal
                    neighbors = [magnitude[i, j-1], magnitude[i, j+1]]
                elif 22.5 <= angle < 67.5:
                    # Diagonal /
                    neighbors = [magnitude[i-1, j+1], magnitude[i+1, j-1]]
                elif 67.5 <= angle < 112.5:
                    # Vertical
                    neighbors = [magnitude[i-1, j], magnitude[i+1, j]]
                else:
                    # Diagonal \
                    neighbors = [magnitude[i-1, j-1], magnitude[i+1, j+1]]
                
                # Keep only if local maximum
                if mag >= max(neighbors):
                    suppressed[i, j] = mag
        
        # Normalize
        suppressed = suppressed / (np.max(suppressed) + 1e-6)
        
        return suppressed


class HairNet(nn.Module):
    """Simple neural network for hair feature extraction (placeholder)."""
    
    def __init__(self):
        super().__init__()
        # Simplified architecture - replace with actual model if needed
        self.encoder = nn.Sequential(
            nn.Conv2d(3, 32, 3, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 3, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Conv2d(64, 128, 3, padding=1),
            nn.ReLU(),
        )
        
        self.decoder = nn.Sequential(
            nn.Conv2d(128, 64, 3, padding=1),
            nn.ReLU(),
            nn.Upsample(scale_factor=2),
            nn.Conv2d(64, 32, 3, padding=1),
            nn.ReLU(),
            nn.Upsample(scale_factor=2),
            nn.Conv2d(32, 1, 3, padding=1),
            nn.Sigmoid()
        )
    
    def extract_features(self, x: torch.Tensor) -> torch.Tensor:
        """Extract features from input image."""
        return self.encoder(x)
    
    def process_features(self, features: torch.Tensor) -> torch.Tensor:
        """Process features to get hair probability."""
        return self.decoder(features)
    
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Forward pass."""
        features = self.extract_features(x)
        output = self.process_features(features)
        return output


# Utility functions
def visualize_hair_segmentation(image: np.ndarray, 
                               results: Dict[str, np.ndarray],
                               save_path: Optional[str] = None) -> np.ndarray:
    """Visualize hair segmentation results."""
    h, w = image.shape[:2]
    
    # Create visualization grid
    viz = np.zeros((h * 2, w * 2, 3), dtype=np.uint8)
    
    # Original image
    viz[:h, :w] = image
    
    # Hair mask overlay
    mask_colored = np.zeros_like(image)
    mask_colored[:, :, 1] = (results['mask'] * 255).astype(np.uint8)  # Green channel
    overlay = cv2.addWeighted(image, 0.7, mask_colored, 0.3, 0)
    viz[:h, w:] = overlay
    
    # Confidence map
    if 'confidence' in results:
        confidence_colored = cv2.applyColorMap(
            (results['confidence'] * 255).astype(np.uint8),
            cv2.COLORMAP_JET
        )
        viz[h:, :w] = confidence_colored
    
    # Edges and strands
    if 'edges' in results and 'strands' in results:
        edges_viz = np.zeros_like(image)
        edges_viz[:, :, 2] = (results['edges'] * 255).astype(np.uint8)  # Red channel
        
        if results['strands'] is not None:
            edges_viz[:, :, 0] = (results['strands'] * 255).astype(np.uint8)  # Blue channel
        
        viz[h:, w:] = edges_viz
    
    # Add labels
    cv2.putText(viz, "Original", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
    cv2.putText(viz, "Hair Mask", (w + 10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
    cv2.putText(viz, "Confidence", (10, h + 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
    cv2.putText(viz, "Edges/Strands", (w + 10, h + 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
    
    if save_path:
        cv2.imwrite(save_path, viz)
    
    return viz


# Export classes and functions
__all__ = [
    'HairSegmentationPipeline',
    'HairConfig',
    'HairMaskRefiner',
    'AsymmetryDetector',
    'HairEdgeEnhancer',
    'HairNet',
    'visualize_hair_segmentation'
]