File size: 31,534 Bytes
9de3cd4 80e0ebd 9de3cd4 5d491c9 f65f330 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 |
"""
Quality analysis and metrics for BackgroundFX Pro.
Provides REAL metrics instead of fake 100% values.
"""
import numpy as np
import cv2
import torch
from typing import Dict, List, Optional, Tuple, Any
from dataclasses import dataclass, field
from collections import deque
import logging
from scipy import signal, ndimage
# from skimage import metrics as skmetrics
import json
from pathlib import Path
from datetime import datetime
logger = logging.getLogger(__name__)
@dataclass
class QualityMetrics:
"""Real quality metrics container."""
# Edge Quality
edge_accuracy: float = 0.0
edge_smoothness: float = 0.0
edge_completeness: float = 0.0
# Temporal Quality
temporal_stability: float = 0.0
temporal_consistency: float = 0.0
flicker_score: float = 0.0
# Mask Quality
mask_coverage: float = 0.0
mask_accuracy: float = 0.0
mask_confidence: float = 0.0
hole_ratio: float = 0.0
# Detail Preservation
detail_preservation: float = 0.0
hair_detail_score: float = 0.0
texture_quality: float = 0.0
# Overall Scores
overall_quality: float = 0.0
processing_confidence: float = 0.0
# Detailed breakdown
breakdown: Dict[str, float] = field(default_factory=dict)
warnings: List[str] = field(default_factory=list)
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary."""
return {
'edge_accuracy': round(self.edge_accuracy, 3),
'edge_smoothness': round(self.edge_smoothness, 3),
'edge_completeness': round(self.edge_completeness, 3),
'temporal_stability': round(self.temporal_stability, 3),
'temporal_consistency': round(self.temporal_consistency, 3),
'flicker_score': round(self.flicker_score, 3),
'mask_coverage': round(self.mask_coverage, 3),
'mask_accuracy': round(self.mask_accuracy, 3),
'mask_confidence': round(self.mask_confidence, 3),
'hole_ratio': round(self.hole_ratio, 3),
'detail_preservation': round(self.detail_preservation, 3),
'hair_detail_score': round(self.hair_detail_score, 3),
'texture_quality': round(self.texture_quality, 3),
'overall_quality': round(self.overall_quality, 3),
'processing_confidence': round(self.processing_confidence, 3),
'breakdown': self.breakdown,
'warnings': self.warnings
}
def get_summary(self) -> str:
"""Get human-readable summary."""
status = "Excellent" if self.overall_quality > 0.9 else \
"Good" if self.overall_quality > 0.75 else \
"Fair" if self.overall_quality > 0.6 else "Poor"
return (f"Quality: {status} ({self.overall_quality:.1%})\n"
f"Edge: {self.edge_accuracy:.1%} | "
f"Temporal: {self.temporal_stability:.1%} | "
f"Detail: {self.detail_preservation:.1%}")
@dataclass
class QualityConfig:
"""Configuration for quality analysis."""
enable_deep_analysis: bool = True
temporal_window: int = 5
edge_threshold: float = 0.1
min_confidence: float = 0.6
detect_artifacts: bool = True
compute_ssim: bool = True
compute_psnr: bool = True
save_reports: bool = True
report_dir: str = "LOGS/quality_reports"
warning_thresholds: Dict[str, float] = field(default_factory=lambda: {
'edge_accuracy': 0.7,
'temporal_stability': 0.75,
'mask_accuracy': 0.8,
'detail_preservation': 0.7
})
class QualityAnalyzer:
"""Comprehensive quality analysis system."""
def __init__(self, config: Optional[QualityConfig] = None):
self.config = config or QualityConfig()
self.frame_buffer = deque(maxlen=self.config.temporal_window)
self.mask_buffer = deque(maxlen=self.config.temporal_window)
self.metrics_history = deque(maxlen=100)
self.frame_count = 0
# Initialize analyzers
self.edge_analyzer = EdgeQualityAnalyzer()
self.temporal_analyzer = TemporalQualityAnalyzer()
self.detail_analyzer = DetailPreservationAnalyzer()
self.artifact_detector = ArtifactDetector()
# Create report directory
if self.config.save_reports:
Path(self.config.report_dir).mkdir(parents=True, exist_ok=True)
def analyze_frame(self,
original_frame: np.ndarray,
processed_frame: np.ndarray,
mask: np.ndarray,
alpha: Optional[np.ndarray] = None) -> QualityMetrics:
"""Analyze frame quality with REAL metrics."""
self.frame_count += 1
metrics = QualityMetrics()
# Add to buffers
self.frame_buffer.append(processed_frame)
self.mask_buffer.append(mask)
# 1. Edge Quality Analysis
edge_metrics = self.edge_analyzer.analyze(original_frame, mask, alpha)
metrics.edge_accuracy = edge_metrics['accuracy']
metrics.edge_smoothness = edge_metrics['smoothness']
metrics.edge_completeness = edge_metrics['completeness']
# 2. Temporal Quality (if we have history)
if len(self.mask_buffer) >= 2:
temporal_metrics = self.temporal_analyzer.analyze(
self.mask_buffer, self.frame_buffer
)
metrics.temporal_stability = temporal_metrics['stability']
metrics.temporal_consistency = temporal_metrics['consistency']
metrics.flicker_score = temporal_metrics['flicker']
else:
# First frame defaults
metrics.temporal_stability = 1.0
metrics.temporal_consistency = 1.0
metrics.flicker_score = 0.0
# 3. Mask Quality Analysis
mask_metrics = self._analyze_mask_quality(mask, alpha)
metrics.mask_coverage = mask_metrics['coverage']
metrics.mask_accuracy = mask_metrics['accuracy']
metrics.mask_confidence = mask_metrics['confidence']
metrics.hole_ratio = mask_metrics['hole_ratio']
# 4. Detail Preservation
detail_metrics = self.detail_analyzer.analyze(
original_frame, processed_frame, mask
)
metrics.detail_preservation = detail_metrics['overall']
metrics.hair_detail_score = detail_metrics['hair_detail']
metrics.texture_quality = detail_metrics['texture']
# 5. Artifact Detection
if self.config.detect_artifacts:
artifacts = self.artifact_detector.detect(processed_frame, mask)
if artifacts['found']:
for artifact in artifacts['types']:
metrics.warnings.append(f"Artifact detected: {artifact}")
# 6. Compute Overall Quality (weighted average)
metrics.overall_quality = self._compute_overall_quality(metrics)
metrics.processing_confidence = self._compute_confidence(metrics)
# 7. Generate warnings based on thresholds
self._generate_warnings(metrics)
# 8. Store in history
self.metrics_history.append(metrics)
# 9. Save report if configured
if self.config.save_reports and self.frame_count % 30 == 0:
self._save_report(metrics)
return metrics
def _analyze_mask_quality(self, mask: np.ndarray,
alpha: Optional[np.ndarray] = None) -> Dict[str, float]:
"""Analyze mask quality metrics."""
h, w = mask.shape[:2]
total_pixels = h * w
# Coverage ratio
coverage = np.sum(mask > 0.5) / total_pixels
# Hole detection
mask_binary = (mask > 0.5).astype(np.uint8)
# Find contours
contours, _ = cv2.findContours(
mask_binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
# Find holes (internal contours)
hole_area = 0
if len(contours) > 0:
# Create filled mask
filled = np.zeros_like(mask_binary)
cv2.drawContours(filled, contours, -1, 1, -1)
# Holes are the difference
holes = filled - mask_binary
hole_area = np.sum(holes) / np.sum(filled) if np.sum(filled) > 0 else 0
# Accuracy (based on gradient consistency)
gradient_x = cv2.Sobel(mask, cv2.CV_64F, 1, 0, ksize=3)
gradient_y = cv2.Sobel(mask, cv2.CV_64F, 0, 1, ksize=3)
gradient_mag = np.sqrt(gradient_x**2 + gradient_y**2)
# Good masks have smooth gradients
gradient_smoothness = 1.0 - np.std(gradient_mag) / (np.mean(gradient_mag) + 1e-6)
accuracy = np.clip(gradient_smoothness, 0, 1)
# Confidence (alpha vs mask consistency if alpha provided)
if alpha is not None:
diff = np.abs(alpha - mask)
confidence = 1.0 - np.mean(diff)
else:
# Use mask value distribution as confidence
hist, _ = np.histogram(mask.flatten(), bins=10, range=(0, 1))
hist = hist / hist.sum()
# High confidence = values clustered near 0 or 1
confidence = (hist[0] + hist[-1]) / 2.0
return {
'coverage': coverage,
'accuracy': accuracy,
'confidence': confidence,
'hole_ratio': hole_area
}
def _compute_overall_quality(self, metrics: QualityMetrics) -> float:
"""Compute weighted overall quality score."""
weights = {
'edge': 0.25,
'temporal': 0.25,
'mask': 0.25,
'detail': 0.25
}
# Component scores
edge_score = np.mean([
metrics.edge_accuracy,
metrics.edge_smoothness,
metrics.edge_completeness
])
temporal_score = np.mean([
metrics.temporal_stability,
metrics.temporal_consistency,
1.0 - metrics.flicker_score # Invert flicker
])
mask_score = np.mean([
metrics.mask_accuracy,
metrics.mask_confidence,
1.0 - metrics.hole_ratio # Invert hole ratio
])
detail_score = np.mean([
metrics.detail_preservation,
metrics.hair_detail_score,
metrics.texture_quality
])
# Weighted average
overall = (
weights['edge'] * edge_score +
weights['temporal'] * temporal_score +
weights['mask'] * mask_score +
weights['detail'] * detail_score
)
# Apply penalties for warnings
penalty = len(metrics.warnings) * 0.05
overall = max(0, overall - penalty)
return np.clip(overall, 0, 1)
def _compute_confidence(self, metrics: QualityMetrics) -> float:
"""Compute processing confidence."""
# Factors that affect confidence
factors = []
# High edge accuracy increases confidence
factors.append(metrics.edge_accuracy)
# Good temporal stability increases confidence
factors.append(metrics.temporal_stability)
# Low hole ratio increases confidence
factors.append(1.0 - metrics.hole_ratio)
# Mask confidence directly affects overall confidence
factors.append(metrics.mask_confidence)
# No warnings increases confidence
warning_factor = 1.0 if len(metrics.warnings) == 0 else 0.8
factors.append(warning_factor)
return np.mean(factors)
def _generate_warnings(self, metrics: QualityMetrics):
"""Generate warnings based on quality thresholds."""
for metric_name, threshold in self.config.warning_thresholds.items():
if hasattr(metrics, metric_name):
value = getattr(metrics, metric_name)
if value < threshold:
metrics.warnings.append(
f"Low {metric_name.replace('_', ' ')}: {value:.1%} < {threshold:.1%}"
)
def _save_report(self, metrics: QualityMetrics):
"""Save quality report to file."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
report_path = Path(self.config.report_dir) / f"quality_report_{timestamp}.json"
report = {
'timestamp': timestamp,
'frame_count': self.frame_count,
'metrics': metrics.to_dict(),
'config': {
'temporal_window': self.config.temporal_window,
'edge_threshold': self.config.edge_threshold,
'min_confidence': self.config.min_confidence
}
}
with open(report_path, 'w') as f:
json.dump(report, f, indent=2)
logger.info(f"Quality report saved to {report_path}")
def get_statistics(self) -> Dict[str, Any]:
"""Get quality statistics over time."""
if not self.metrics_history:
return {}
# Compute statistics
all_metrics = list(self.metrics_history)
stats = {
'average_quality': np.mean([m.overall_quality for m in all_metrics]),
'min_quality': np.min([m.overall_quality for m in all_metrics]),
'max_quality': np.max([m.overall_quality for m in all_metrics]),
'std_quality': np.std([m.overall_quality for m in all_metrics]),
'total_warnings': sum(len(m.warnings) for m in all_metrics),
'frames_analyzed': len(all_metrics)
}
return stats
class EdgeQualityAnalyzer:
"""Analyzes edge quality in masks."""
def analyze(self, image: np.ndarray, mask: np.ndarray,
alpha: Optional[np.ndarray] = None) -> Dict[str, float]:
"""Analyze edge quality metrics."""
# Convert to grayscale if needed
if len(image.shape) == 3:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray = image
# Detect edges in image
image_edges = cv2.Canny(gray, 50, 150) / 255.0
# Detect edges in mask
mask_uint8 = (mask * 255).astype(np.uint8)
mask_edges = cv2.Canny(mask_uint8, 50, 150) / 255.0
# Edge accuracy: how well mask edges align with image edges
overlap = np.logical_and(image_edges > 0, mask_edges > 0)
accuracy = np.sum(overlap) / (np.sum(mask_edges) + 1e-6)
# Edge smoothness: measure edge roughness
contours, _ = cv2.findContours(
mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
smoothness = 1.0
if len(contours) > 0:
# Approximate contours and measure approximation quality
for contour in contours:
perimeter = cv2.arcLength(contour, True)
if perimeter > 0:
# Approximate polygon
epsilon = 0.02 * perimeter
approx = cv2.approxPolyDP(contour, epsilon, True)
# Smoothness based on approximation ratio
complexity = len(approx) / (perimeter / 10 + 1)
smoothness = min(smoothness, 1.0 / (1.0 + complexity))
# Edge completeness: how much of image edges are covered
if np.sum(image_edges) > 0:
# Dilate mask edges to allow some tolerance
kernel = np.ones((5, 5), np.uint8)
mask_edges_dilated = cv2.dilate(mask_edges, kernel, iterations=1)
covered = np.logical_and(image_edges > 0, mask_edges_dilated > 0)
completeness = np.sum(covered) / np.sum(image_edges)
else:
completeness = 1.0
return {
'accuracy': np.clip(accuracy, 0, 1),
'smoothness': np.clip(smoothness, 0, 1),
'completeness': np.clip(completeness, 0, 1)
}
class TemporalQualityAnalyzer:
"""Analyzes temporal consistency and stability."""
def analyze(self, mask_buffer: deque, frame_buffer: deque) -> Dict[str, float]:
"""Analyze temporal quality metrics."""
if len(mask_buffer) < 2:
return {'stability': 1.0, 'consistency': 1.0, 'flicker': 0.0}
masks = list(mask_buffer)
# Temporal stability: measure change between consecutive frames
differences = []
for i in range(1, len(masks)):
diff = np.abs(masks[i] - masks[i-1])
differences.append(np.mean(diff))
# Lower difference = higher stability
avg_diff = np.mean(differences)
stability = 1.0 - min(avg_diff * 2, 1.0) # Scale and invert
# Temporal consistency: measure variance across window
mask_stack = np.stack(masks, axis=0)
variance = np.var(mask_stack, axis=0)
consistency = 1.0 - np.mean(variance)
# Flicker detection: look for alternating patterns
flicker = 0.0
if len(differences) >= 3:
# Check for alternating high-low-high pattern
for i in range(1, len(differences) - 1):
if differences[i] < differences[i-1] * 0.5 and differences[i] < differences[i+1] * 0.5:
flicker += 0.1
elif differences[i] > differences[i-1] * 2 and differences[i] > differences[i+1] * 2:
flicker += 0.1
flicker = min(flicker, 1.0)
return {
'stability': np.clip(stability, 0, 1),
'consistency': np.clip(consistency, 0, 1),
'flicker': np.clip(flicker, 0, 1)
}
class DetailPreservationAnalyzer:
"""Analyzes how well details are preserved."""
def analyze(self, original: np.ndarray, processed: np.ndarray,
mask: np.ndarray) -> Dict[str, float]:
"""Analyze detail preservation metrics."""
# Convert to grayscale for analysis
if len(original.shape) == 3:
orig_gray = cv2.cvtColor(original, cv2.COLOR_BGR2GRAY)
proc_gray = cv2.cvtColor(processed, cv2.COLOR_BGR2GRAY)
else:
orig_gray = original
proc_gray = processed
# Focus on masked region
mask_binary = mask > 0.5
# Overall detail preservation using SSIM
overall = 1.0
if np.any(mask_binary):
# Compute SSIM on masked region
orig_masked = orig_gray * mask_binary
proc_masked = proc_gray * mask_binary
try:
overall = skmetrics.structural_similarity(
orig_masked, proc_masked,
data_range=255
)
except:
overall = 0.8 # Default if SSIM fails
# Hair detail score (high-frequency preservation)
hair_detail = self._analyze_hair_details(orig_gray, proc_gray, mask)
# Texture quality (local variance preservation)
texture = self._analyze_texture_quality(orig_gray, proc_gray, mask_binary)
return {
'overall': np.clip(overall, 0, 1),
'hair_detail': np.clip(hair_detail, 0, 1),
'texture': np.clip(texture, 0, 1)
}
def _analyze_hair_details(self, orig: np.ndarray, proc: np.ndarray,
mask: np.ndarray) -> float:
"""Analyze hair detail preservation."""
# Use high-pass filter to extract fine details
kernel = np.array([[-1, -1, -1],
[-1, 8, -1],
[-1, -1, -1]], dtype=np.float32)
orig_details = cv2.filter2D(orig, -1, kernel)
proc_details = cv2.filter2D(proc, -1, kernel)
# Focus on edge regions (likely hair)
edges = cv2.Canny((mask * 255).astype(np.uint8), 50, 150)
edge_mask = edges > 0
if np.any(edge_mask):
# Compare detail preservation in edge regions
orig_edge_details = np.abs(orig_details[edge_mask])
proc_edge_details = np.abs(proc_details[edge_mask])
# Compute correlation
if len(orig_edge_details) > 0 and len(proc_edge_details) > 0:
correlation = np.corrcoef(
orig_edge_details.flatten(),
proc_edge_details.flatten()
)[0, 1]
return (correlation + 1) / 2 # Normalize to [0, 1]
return 0.8 # Default score
def _analyze_texture_quality(self, orig: np.ndarray, proc: np.ndarray,
mask: np.ndarray) -> float:
"""Analyze texture preservation quality."""
# Compute local variance (texture measure)
window_size = 5
def local_variance(img):
mean = cv2.blur(img, (window_size, window_size))
sqr_mean = cv2.blur(img**2, (window_size, window_size))
variance = sqr_mean - mean**2
return np.sqrt(np.maximum(variance, 0))
orig_texture = local_variance(orig.astype(np.float32))
proc_texture = local_variance(proc.astype(np.float32))
# Compare texture in masked region
if np.any(mask):
orig_masked_texture = orig_texture[mask]
proc_masked_texture = proc_texture[mask]
if len(orig_masked_texture) > 0:
# Compute texture similarity
texture_diff = np.abs(orig_masked_texture - proc_masked_texture)
max_texture = np.maximum(orig_masked_texture, proc_masked_texture) + 1e-6
similarity = 1.0 - np.mean(texture_diff / max_texture)
return similarity
return 0.8 # Default score
class ArtifactDetector:
"""Detects various artifacts in processed frames."""
def detect(self, frame: np.ndarray, mask: np.ndarray) -> Dict[str, Any]:
"""Detect artifacts in frame and mask."""
artifacts = {
'found': False,
'types': [],
'locations': []
}
# Check for halo artifacts
if self._detect_halo(frame, mask):
artifacts['found'] = True
artifacts['types'].append('halo')
# Check for color bleeding
if self._detect_color_bleeding(frame, mask):
artifacts['found'] = True
artifacts['types'].append('color_bleeding')
# Check for blocky artifacts
if self._detect_blockiness(mask):
artifacts['found'] = True
artifacts['types'].append('blockiness')
# Check for noise artifacts
if self._detect_noise(mask):
artifacts['found'] = True
artifacts['types'].append('noise')
return artifacts
def _detect_halo(self, frame: np.ndarray, mask: np.ndarray) -> bool:
"""Detect halo artifacts around edges."""
# Dilate mask to get outer region
kernel = np.ones((5, 5), np.uint8)
dilated = cv2.dilate((mask > 0.5).astype(np.uint8), kernel, iterations=2)
# Get halo region (dilated - original)
halo_region = dilated - (mask > 0.5).astype(np.uint8)
if np.any(halo_region):
# Check for unusual brightness in halo region
halo_pixels = frame[halo_region > 0]
if len(halo_pixels) > 0:
mean_brightness = np.mean(halo_pixels)
# Compare with overall image brightness
overall_brightness = np.mean(frame)
# Halo detected if halo region is significantly brighter/darker
if abs(mean_brightness - overall_brightness) > 30:
return True
return False
def _detect_color_bleeding(self, frame: np.ndarray, mask: np.ndarray) -> bool:
"""Detect color bleeding at edges."""
# Get edge region
edges = cv2.Canny((mask * 255).astype(np.uint8), 50, 150)
kernel = np.ones((3, 3), np.uint8)
edge_region = cv2.dilate(edges, kernel, iterations=1) > 0
if np.any(edge_region) and len(frame.shape) == 3:
# Analyze color variance in edge region
edge_pixels = frame[edge_region]
if len(edge_pixels) > 0:
# High color variance at edges might indicate bleeding
color_std = np.std(edge_pixels, axis=0)
if np.max(color_std) > 50: # High variance threshold
return True
return False
def _detect_blockiness(self, mask: np.ndarray) -> bool:
"""Detect blocky artifacts in mask."""
# Compute gradient
grad_x = np.abs(np.diff(mask, axis=1))
grad_y = np.abs(np.diff(mask, axis=0))
# Look for regular patterns (blockiness)
if grad_x.size > 0 and grad_y.size > 0:
# FFT to detect regular patterns
fft_x = np.fft.fft2(grad_x)
fft_y = np.fft.fft2(grad_y)
# Check for peaks at regular intervals (block boundaries)
spectrum_x = np.abs(fft_x)
spectrum_y = np.abs(fft_y)
# Simple blockiness detection: high energy at specific frequencies
blockiness_score = (np.max(spectrum_x) + np.max(spectrum_y)) / (spectrum_x.size + spectrum_y.size)
if blockiness_score > 0.1: # Threshold for blockiness
return True
return False
def _detect_noise(self, mask: np.ndarray) -> bool:
"""Detect noise artifacts in mask."""
# Compute local variance as noise measure
mean = cv2.blur(mask, (3, 3))
sqr_mean = cv2.blur(mask**2, (3, 3))
variance = sqr_mean - mean**2
# High variance in smooth regions indicates noise
smooth_regions = (mask > 0.3) & (mask < 0.7)
if np.any(smooth_regions):
noise_level = np.mean(variance[smooth_regions])
if noise_level > 0.05: # Noise threshold
return True
return False
class MetricsTracker:
"""Tracks metrics over time for reporting."""
def __init__(self, window_size: int = 100):
self.window_size = window_size
self.metrics_history = deque(maxlen=window_size)
self.frame_times = deque(maxlen=window_size)
def add(self, metrics: QualityMetrics, frame_time: float):
"""Add metrics to tracker."""
self.metrics_history.append(metrics)
self.frame_times.append(frame_time)
def get_trends(self) -> Dict[str, List[float]]:
"""Get metric trends over time."""
if not self.metrics_history:
return {}
trends = {
'overall_quality': [],
'edge_accuracy': [],
'temporal_stability': [],
'detail_preservation': []
}
for metrics in self.metrics_history:
trends['overall_quality'].append(metrics.overall_quality)
trends['edge_accuracy'].append(metrics.edge_accuracy)
trends['temporal_stability'].append(metrics.temporal_stability)
trends['detail_preservation'].append(metrics.detail_preservation)
return trends
def get_average_fps(self) -> float:
"""Get average FPS from frame times."""
if len(self.frame_times) < 2:
return 0.0
time_diffs = [self.frame_times[i] - self.frame_times[i-1]
for i in range(1, len(self.frame_times))]
avg_time = np.mean(time_diffs)
return 1.0 / avg_time if avg_time > 0 else 0.0
class QualityReport:
"""Generates quality reports."""
@staticmethod
def generate(metrics: QualityMetrics,
statistics: Dict[str, Any],
output_path: Optional[str] = None) -> str:
"""Generate comprehensive quality report."""
report = []
report.append("=" * 60)
report.append("BACKGROUNDFX PRO - QUALITY REPORT")
report.append("=" * 60)
report.append("")
# Overall summary
report.append(f"Overall Quality: {metrics.overall_quality:.1%}")
report.append(f"Processing Confidence: {metrics.processing_confidence:.1%}")
report.append("")
# Detailed metrics
report.append("DETAILED METRICS:")
report.append("-" * 40)
report.append(f"Edge Accuracy: {metrics.edge_accuracy:.1%}")
report.append(f"Edge Smoothness: {metrics.edge_smoothness:.1%}")
report.append(f"Edge Completeness: {metrics.edge_completeness:.1%}")
report.append("")
report.append(f"Temporal Stability: {metrics.temporal_stability:.1%}")
report.append(f"Temporal Consistency: {metrics.temporal_consistency:.1%}")
report.append(f"Flicker Score: {metrics.flicker_score:.1%}")
report.append("")
report.append(f"Mask Coverage: {metrics.mask_coverage:.1%}")
report.append(f"Mask Accuracy: {metrics.mask_accuracy:.1%}")
report.append(f"Hole Ratio: {metrics.hole_ratio:.1%}")
report.append("")
report.append(f"Detail Preservation: {metrics.detail_preservation:.1%}")
report.append(f"Hair Detail Score: {metrics.hair_detail_score:.1%}")
report.append(f"Texture Quality: {metrics.texture_quality:.1%}")
report.append("")
# Warnings
if metrics.warnings:
report.append("WARNINGS:")
report.append("-" * 40)
for warning in metrics.warnings:
report.append(f"⚠️ {warning}")
report.append("")
# Statistics
if statistics:
report.append("STATISTICS:")
report.append("-" * 40)
report.append(f"Average Quality: {statistics.get('average_quality', 0):.1%}")
report.append(f"Min Quality: {statistics.get('min_quality', 0):.1%}")
report.append(f"Max Quality: {statistics.get('max_quality', 0):.1%}")
report.append(f"Std Deviation: {statistics.get('std_quality', 0):.3f}")
report.append(f"Total Warnings: {statistics.get('total_warnings', 0)}")
report.append(f"Frames Analyzed: {statistics.get('frames_analyzed', 0)}")
report.append("")
report.append("=" * 60)
report_text = "\n".join(report)
# Save if path provided
if output_path:
with open(output_path, 'w') as f:
f.write(report_text)
return report_text
# Export classes
__all__ = [
'QualityAnalyzer',
'QualityMetrics',
'QualityConfig',
'MetricsTracker',
'QualityReport',
'EdgeQualityAnalyzer',
'TemporalQualityAnalyzer',
'DetailPreservationAnalyzer',
'ArtifactDetector'
] |