File size: 14,587 Bytes
dd1ef11 239315b 66fefac dd1ef11 85287ea 239315b dd1ef11 239315b 66fefac 239315b 66fefac 239315b 66fefac 239315b 66fefac 239315b 66fefac 239315b 66fefac 239315b 85287ea 239315b 66fefac 239315b 66fefac 239315b 66fefac 239315b dd1ef11 239315b 66fefac 239315b 66fefac 239315b 66fefac 239315b 66fefac 239315b 66fefac 239315b 66fefac 239315b 64677e7 239315b 66fefac f0f27f4 239315b 66fefac f0f27f4 85287ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
#!/usr/bin/env python3
"""
UI Components for BackgroundFX Pro (Hugging Face Spaces, CSP-safe)
- Clean, modern layout with tabs
- Keeps existing functionality:
* Load models
* Process video (single-stage / two-stage switch, previews, etc.)
* Status panel
- Adds lightweight "AI Background" generator (procedural, no heavy deps)
- NEW:
* Preview of uploaded custom background
* Preview of the video's first frame when a video is uploaded
* Background style keys aligned with utils.cv_processing.PROFESSIONAL_BACKGROUNDS
"""
from __future__ import annotations
import os
import time
import random
from pathlib import Path
from typing import Optional, Tuple, Dict, Any, List
import gradio as gr
from PIL import Image, ImageFilter, ImageOps
import numpy as np
import cv2
# Import core wrappers (core/app.py only imports UI from inside main(), no circular import)
from core.app import (
load_models_with_validation,
process_video_fixed,
get_model_status,
get_cache_status,
PROCESS_CANCELLED,
)
# --------------------------
# Helpers: file paths, io
# --------------------------
TMP_DIR = Path("/tmp/bgfx")
TMP_DIR.mkdir(parents=True, exist_ok=True)
def _save_pil(img: Image.Image, stem: str = "gen_bg", ext: str = "png") -> str:
ts = int(time.time() * 1000)
p = TMP_DIR / f"{stem}_{ts}.{ext}"
img.save(p)
return str(p)
def _pil_from_path(path: str) -> Optional[Image.Image]:
try:
return Image.open(path).convert("RGB")
except Exception:
return None
def _first_frame(path: str, max_side: int = 960) -> Optional[Image.Image]:
"""Extract the first frame of a video for preview."""
try:
cap = cv2.VideoCapture(path)
ok, frame = cap.read()
cap.release()
if not ok or frame is None:
return None
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
h, w = frame.shape[:2]
scale = min(1.0, max_side / max(h, w))
if scale < 1.0:
frame = cv2.resize(frame, (int(w * scale), int(h * scale)), interpolation=cv2.INTER_AREA)
return Image.fromarray(frame)
except Exception:
return None
# --------------------------
# Lightweight "AI" background generator
# --------------------------
_PALETTES = {
"office": [(240, 245, 250), (210, 220, 230), (180, 190, 200)],
"studio": [(18, 18, 20), (32, 32, 36), (58, 60, 64)],
"sunset": [(255, 183, 77), (255, 138, 101), (244, 143, 177)],
"forest": [(46, 125, 50), (102, 187, 106), (165, 214, 167)],
"ocean": [(33, 150, 243), (3, 169, 244), (0, 188, 212)],
"minimal": [(245, 246, 248), (230, 232, 236), (214, 218, 224)],
"warm": [(255, 224, 178), (255, 204, 128), (255, 171, 145)],
"cool": [(197, 202, 233), (179, 229, 252), (178, 235, 242)],
"royal": [(63, 81, 181), (121, 134, 203), (159, 168, 218)],
}
def _palette_from_prompt(prompt: str) -> List[tuple]:
p = (prompt or "").lower()
for key, pal in _PALETTES.items():
if key in p:
return pal
random.seed(hash(p) % (2**32 - 1))
return [tuple(random.randint(90, 200) for _ in range(3)) for _ in range(3)]
def _perlin_like_noise(h: int, w: int, octaves: int = 4) -> np.ndarray:
acc = np.zeros((h, w), dtype=np.float32)
for o in range(octaves):
scale = 2 ** o
small = np.random.rand(h // scale + 1, w // scale + 1).astype(np.float32)
small = Image.fromarray((small * 255).astype(np.uint8)).resize((w, h), Image.BILINEAR)
arr = np.array(small).astype(np.float32) / 255.0
acc += arr / (o + 1)
acc = acc / max(1e-6, acc.max())
return acc
def _blend_palette(noise: np.ndarray, palette: List[tuple]) -> Image.Image:
h, w = noise.shape
img = np.zeros((h, w, 3), dtype=np.float32)
thresholds = [0.33, 0.66]
c0, c1, c2 = [np.array(c, dtype=np.float32) for c in palette]
mask0 = noise < thresholds[0]
mask1 = (noise >= thresholds[0]) & (noise < thresholds[1])
mask2 = noise >= thresholds[1]
img[mask0] = c0
img[mask1] = c1
img[mask2] = c2
img = np.clip(img, 0, 255).astype(np.uint8)
return Image.fromarray(img)
def generate_ai_background(
prompt: str,
width: int = 1280,
height: int = 720,
bokeh: float = 0.0,
vignette: float = 0.15,
contrast: float = 1.05,
) -> Tuple[Image.Image, str]:
palette = _palette_from_prompt(prompt)
noise = _perlin_like_noise(height, width, octaves=4)
img = _blend_palette(noise, palette)
if bokeh > 0:
img = img.filter(ImageFilter.GaussianBlur(radius=max(0, min(50, bokeh))))
if vignette > 0:
y, x = np.ogrid[:height, :width]
cx, cy = width / 2, height / 2
r = np.sqrt((x - cx) ** 2 + (y - cy) ** 2)
mask = 1 - np.clip(r / (max(width, height) / 1.2), 0, 1)
mask = mask ** 2
mask = (mask * (1 - vignette) + (1 - (1 - vignette))).astype(np.float32)
base = np.array(img).astype(np.float32) / 255.0
out = np.empty_like(base)
for c in range(3):
out[..., c] = base[..., c] * mask
img = Image.fromarray(np.clip(out * 255, 0, 255).astype(np.uint8))
if contrast != 1.0:
img = ImageOps.autocontrast(img, cutoff=1)
arr = np.array(img).astype(np.float32)
mean = arr.mean(axis=(0, 1), keepdims=True)
arr = (arr - mean) * float(contrast) + mean
img = Image.fromarray(np.clip(arr, 0, 255).astype(np.uint8))
path = _save_pil(img, stem="ai_bg", ext="png")
return img, path
# --------------------------
# Gradio UI
# --------------------------
CSS = """
:root { --radius: 16px; }
.gradio-container { max-width: 1080px !important; margin: auto !important; }
#hero .prose { font-size: 15px; }
.card { border-radius: var(--radius); border: 1px solid rgba(0,0,0,.08); padding: 16px; background: linear-gradient(180deg, rgba(255,255,255,.9), rgba(248,250,252,.9)); box-shadow: 0 10px 30px rgba(0,0,0,.06); }
.footer-note { opacity: 0.7; font-size: 12px; }
.sm { font-size: 13px; opacity: 0.85; }
#statusbox { min-height: 120px; }
"""
def create_interface() -> gr.Blocks:
with gr.Blocks(title="π¬ BackgroundFX Pro", css=CSS, analytics_enabled=False, theme=gr.themes.Soft()) as demo:
# ---------- HERO ----------
with gr.Row(elem_id="hero"):
gr.Markdown(
"## π¬ BackgroundFX Pro\n"
"Polished matting & background replacement for video. Runs on Hugging Face Spaces.\n"
"Tip: **Load models** before processing for best results."
)
with gr.Tab("π Quick Start"):
with gr.Row():
with gr.Column(scale=1):
# Inputs
video = gr.Video(label="Upload Video")
video_preview = gr.Image(label="Video First Frame (Preview)", interactive=False)
# Align keys with utils.cv_processing.PROFESSIONAL_BACKGROUNDS
bg_style = gr.Dropdown(
label="Background Style",
choices=[
"minimalist",
"office_modern",
"studio_blue",
"studio_green",
"warm_gradient",
"tech_dark",
],
value="minimalist",
)
custom_bg = gr.File(label="Custom Background (Optional)", file_types=["image"])
custom_bg_preview = gr.Image(label="Custom Background Preview", interactive=False)
with gr.Accordion("Advanced", open=False):
use_two_stage = gr.Checkbox(label="Use Two-Stage Pipeline", value=False)
chroma_preset = gr.Dropdown(label="Chroma Preset", choices=["standard"], value="standard")
preview_mask = gr.Checkbox(label="Preview Mask (no audio remix)", value=False)
preview_greenscreen = gr.Checkbox(label="Preview Greenscreen (no audio remix)", value=False)
with gr.Row():
btn_load = gr.Button("π Load Models", variant="secondary")
btn_run = gr.Button("π¬ Process Video", variant="primary")
btn_cancel = gr.Button("βΉοΈ Cancel", variant="secondary")
with gr.Column(scale=1):
out_video = gr.Video(label="Processed Output", interactive=False)
statusbox = gr.Textbox(label="Status", lines=8, elem_id="statusbox")
with gr.Row():
btn_refresh = gr.Button("π Refresh Status", variant="secondary")
btn_clear = gr.Button("π§Ή Clear", variant="secondary")
# ---------- AI BACKGROUND ----------
with gr.Tab("π§ AI Background (Lightweight)"):
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(
label="Describe the vibe (e.g., 'modern office', 'soft sunset studio')",
value="modern office"
)
with gr.Row():
gen_width = gr.Slider(640, 1920, value=1280, step=10, label="Width")
gen_height = gr.Slider(360, 1080, value=720, step=10, label="Height")
with gr.Row():
bokeh = gr.Slider(0, 30, value=8, step=1, label="Bokeh Blur")
vignette = gr.Slider(0.0, 0.6, value=0.15, step=0.01, label="Vignette")
contrast = gr.Slider(0.8, 1.4, value=1.05, step=0.01, label="Contrast")
btn_gen_bg = gr.Button("β¨ Generate Background", variant="primary")
with gr.Column(scale=1):
gen_preview = gr.Image(label="Generated Background", interactive=False)
gen_path = gr.Textbox(label="Saved Path", interactive=False)
use_gen_as_custom = gr.Button("π Use As Custom Background", variant="secondary")
# ---------- STATUS ----------
with gr.Tab("π Status & Settings"):
with gr.Row():
with gr.Column(scale=1, elem_classes=["card"]):
model_status = gr.JSON(label="Model Status")
with gr.Column(scale=1, elem_classes=["card"]):
cache_status = gr.JSON(label="Cache / System Status")
gr.Markdown("<div class='footer-note'>If models fail to load, fallbacks keep the UI responsive. Check logs for details.</div>")
# ---------- CALLBACKS ----------
# Load Models
def _cb_load_models() -> str:
return load_models_with_validation()
# Process
def _cb_process(
vid: str,
style: str,
custom_file: dict | None,
use_two: bool,
chroma: str,
prev_mask: bool,
prev_green: bool,
):
if PROCESS_CANCELLED.is_set():
PROCESS_CANCELLED.clear()
custom_path = None
if isinstance(custom_file, dict) and custom_file.get("name"):
# Gradio passes {"name": "/tmp/...", "size": int, ...}
custom_path = custom_file["name"]
return process_video_fixed(
video_path=vid,
background_choice=style,
custom_background_path=custom_path,
progress_callback=None,
use_two_stage=use_two,
chroma_preset=chroma,
preview_mask=prev_mask,
preview_greenscreen=prev_green,
)
# Cancel processing
def _cb_cancel() -> str:
try:
PROCESS_CANCELLED.set()
return "Cancellation requested."
except Exception as e:
return f"Cancel failed: {e}"
# Refresh status
def _cb_status() -> Tuple[Dict[str, Any], Dict[str, Any]]:
try:
return get_model_status(), get_cache_status()
except Exception as e:
return {"error": str(e)}, {"error": str(e)}
# Clear
def _cb_clear():
return None, "", None, "", None
# AI background generation
def _cb_generate_bg(prompt_text: str, w: int, h: int, b: float, v: float, c: float):
img, path = generate_ai_background(prompt_text, width=int(w), height=int(h), bokeh=b, vignette=v, contrast=c)
return img, path
# Use AI gen as custom
def _cb_use_gen_bg(path_text: str):
return (
{"name": path_text, "size": os.path.getsize(path_text)}
if path_text and os.path.exists(path_text) else None
)
# Video change -> extract first frame
def _cb_video_changed(vid_path: str):
if not vid_path:
return None
img = _first_frame(vid_path)
return img
# Custom background change -> preview image
def _cb_custom_bg_preview(file_obj: dict | None):
try:
if isinstance(file_obj, dict) and file_obj.get("name") and os.path.exists(file_obj["name"]):
pil = _pil_from_path(file_obj["name"])
return pil
except Exception:
pass
return None
# Wire events
btn_load.click(_cb_load_models, outputs=statusbox)
btn_run.click(
_cb_process,
inputs=[video, bg_style, custom_bg, use_two_stage, chroma_preset, preview_mask, preview_greenscreen],
outputs=[out_video, statusbox],
)
btn_cancel.click(_cb_cancel, outputs=statusbox)
btn_refresh.click(_cb_status, outputs=[model_status, cache_status])
btn_clear.click(_cb_clear, outputs=[out_video, statusbox, gen_preview, gen_path, custom_bg_preview])
btn_gen_bg.click(
_cb_generate_bg,
inputs=[prompt, gen_width, gen_height, bokeh, vignette, contrast],
outputs=[gen_preview, gen_path],
)
use_gen_as_custom.click(_cb_use_gen_bg, inputs=[gen_path], outputs=[custom_bg])
# Live previews
video.change(_cb_video_changed, inputs=[video], outputs=[video_preview])
custom_bg.change(_cb_custom_bg_preview, inputs=[custom_bg], outputs=[custom_bg_preview])
return demo
|