File size: 19,257 Bytes
84a78ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
"""
Memory Management Module
Handles memory cleanup, monitoring, and GPU resource management
"""

import gc
import os
import psutil
import torch
import time
import logging
import threading
from typing import Dict, Any, Optional, Callable
from exceptions import MemoryError, ResourceExhaustionError

logger = logging.getLogger(__name__)

class MemoryManager:
    """
    Comprehensive memory management for video processing applications
    """
    
    def __init__(self, device: torch.device, memory_limit_gb: Optional[float] = None):
        self.device = device
        self.gpu_available = device.type in ['cuda', 'mps']
        self.memory_limit_gb = memory_limit_gb
        self.cleanup_callbacks = []
        self.monitoring_active = False
        self.monitoring_thread = None
        self.stats = {
            'cleanup_count': 0,
            'peak_memory_usage': 0.0,
            'total_allocated': 0.0,
            'total_freed': 0.0
        }
        
        # Initialize memory monitoring
        self._initialize_memory_limits()
        logger.info(f"MemoryManager initialized for device: {device}")
    
    def _initialize_memory_limits(self):
        """Initialize memory limits based on device and system"""
        if self.device.type == 'cuda':
            try:
                device_idx = self.device.index or 0
                device_props = torch.cuda.get_device_properties(device_idx)
                total_memory_gb = device_props.total_memory / (1024**3)
                
                # Use 80% of GPU memory as default limit if not specified
                if self.memory_limit_gb is None:
                    self.memory_limit_gb = total_memory_gb * 0.8
                
                logger.info(f"CUDA memory limit set to {self.memory_limit_gb:.1f}GB "
                           f"(total: {total_memory_gb:.1f}GB)")
                
            except Exception as e:
                logger.warning(f"Could not get CUDA memory info: {e}")
                self.memory_limit_gb = 4.0  # Conservative fallback
        
        elif self.device.type == 'mps':
            # MPS uses unified memory, so check system memory
            system_memory_gb = psutil.virtual_memory().total / (1024**3)
            if self.memory_limit_gb is None:
                # Use 50% of system memory for MPS as it shares with system
                self.memory_limit_gb = system_memory_gb * 0.5
            
            logger.info(f"MPS memory limit set to {self.memory_limit_gb:.1f}GB "
                       f"(system: {system_memory_gb:.1f}GB)")
        
        else:  # CPU
            system_memory_gb = psutil.virtual_memory().total / (1024**3)
            if self.memory_limit_gb is None:
                # Use 60% of system memory for CPU processing
                self.memory_limit_gb = system_memory_gb * 0.6
            
            logger.info(f"CPU memory limit set to {self.memory_limit_gb:.1f}GB "
                       f"(system: {system_memory_gb:.1f}GB)")
    
    def get_memory_usage(self) -> Dict[str, Any]:
        """Get comprehensive memory usage statistics"""
        usage = {
            'device_type': self.device.type,
            'memory_limit_gb': self.memory_limit_gb,
            'timestamp': time.time()
        }
        
        try:
            if self.device.type == 'cuda':
                device_idx = self.device.index or 0
                
                # GPU memory
                allocated = torch.cuda.memory_allocated(device_idx)
                reserved = torch.cuda.memory_reserved(device_idx)
                total = torch.cuda.get_device_properties(device_idx).total_memory
                
                usage.update({
                    'gpu_allocated_gb': allocated / (1024**3),
                    'gpu_reserved_gb': reserved / (1024**3),
                    'gpu_total_gb': total / (1024**3),
                    'gpu_utilization_percent': (allocated / total) * 100,
                    'gpu_reserved_percent': (reserved / total) * 100,
                    'gpu_free_gb': (total - reserved) / (1024**3)
                })
                
                # Peak memory tracking
                max_allocated = torch.cuda.max_memory_allocated(device_idx)
                max_reserved = torch.cuda.max_memory_reserved(device_idx)
                usage.update({
                    'gpu_max_allocated_gb': max_allocated / (1024**3),
                    'gpu_max_reserved_gb': max_reserved / (1024**3)
                })
                
            elif self.device.type == 'mps':
                # MPS doesn't have explicit memory tracking like CUDA
                # Fall back to system memory monitoring
                vm = psutil.virtual_memory()
                usage.update({
                    'system_memory_gb': vm.total / (1024**3),
                    'system_available_gb': vm.available / (1024**3),
                    'system_used_gb': vm.used / (1024**3),
                    'system_utilization_percent': vm.percent
                })
        
        except Exception as e:
            logger.warning(f"Error getting GPU memory usage: {e}")
        
        # Always include system memory info
        try:
            vm = psutil.virtual_memory()
            swap = psutil.swap_memory()
            
            usage.update({
                'system_total_gb': vm.total / (1024**3),
                'system_available_gb': vm.available / (1024**3),
                'system_used_gb': vm.used / (1024**3),
                'system_percent': vm.percent,
                'swap_total_gb': swap.total / (1024**3),
                'swap_used_gb': swap.used / (1024**3),
                'swap_percent': swap.percent
            })
            
        except Exception as e:
            logger.warning(f"Error getting system memory usage: {e}")
        
        # Process-specific memory
        try:
            process = psutil.Process()
            memory_info = process.memory_info()
            usage.update({
                'process_rss_gb': memory_info.rss / (1024**3),  # Physical memory
                'process_vms_gb': memory_info.vms / (1024**3),  # Virtual memory
            })
            
        except Exception as e:
            logger.warning(f"Error getting process memory usage: {e}")
        
        # Update peak tracking
        current_usage = usage.get('gpu_allocated_gb', usage.get('system_used_gb', 0))
        if current_usage > self.stats['peak_memory_usage']:
            self.stats['peak_memory_usage'] = current_usage
        
        return usage
    
    def cleanup_basic(self):
        """Basic memory cleanup - lightweight operation"""
        try:
            gc.collect()
            
            if self.device.type == 'cuda':
                torch.cuda.empty_cache()
                
            self.stats['cleanup_count'] += 1
            logger.debug("Basic memory cleanup completed")
            
        except Exception as e:
            logger.warning(f"Basic memory cleanup failed: {e}")
    
    def cleanup_aggressive(self):
        """Aggressive memory cleanup - more thorough but slower"""
        try:
            start_time = time.time()
            
            # Run all registered cleanup callbacks first
            for callback in self.cleanup_callbacks:
                try:
                    callback()
                except Exception as e:
                    logger.warning(f"Cleanup callback failed: {e}")
            
            # Multiple garbage collection passes
            for _ in range(3):
                gc.collect()
            
            if self.device.type == 'cuda':
                # CUDA-specific aggressive cleanup
                torch.cuda.empty_cache()
                torch.cuda.synchronize()
                
                # Reset peak memory statistics
                device_idx = self.device.index or 0
                torch.cuda.reset_peak_memory_stats(device_idx)
                
            elif self.device.type == 'mps':
                # MPS cleanup - mainly garbage collection
                # Could add MPS-specific operations if available
                pass
            
            cleanup_time = time.time() - start_time
            self.stats['cleanup_count'] += 1
            
            logger.debug(f"Aggressive memory cleanup completed in {cleanup_time:.2f}s")
            
        except Exception as e:
            logger.error(f"Aggressive memory cleanup failed: {e}")
            raise MemoryError("aggressive_cleanup", str(e))
    
    def check_memory_pressure(self, threshold_percent: float = 85.0) -> Dict[str, Any]:
        """Check if system is under memory pressure"""
        usage = self.get_memory_usage()
        
        pressure_info = {
            'under_pressure': False,
            'pressure_level': 'normal',  # normal, warning, critical
            'recommendations': [],
            'usage_percent': 0.0
        }
        
        # Determine usage percentage based on device type
        if self.device.type == 'cuda':
            usage_percent = usage.get('gpu_utilization_percent', 0)
            pressure_info['usage_percent'] = usage_percent
            
            if usage_percent >= threshold_percent:
                pressure_info['under_pressure'] = True
                
                if usage_percent >= 95:
                    pressure_info['pressure_level'] = 'critical'
                    pressure_info['recommendations'].extend([
                        'Reduce batch size immediately',
                        'Enable gradient checkpointing',
                        'Consider switching to CPU processing'
                    ])
                elif usage_percent >= threshold_percent:
                    pressure_info['pressure_level'] = 'warning'
                    pressure_info['recommendations'].extend([
                        'Run aggressive memory cleanup',
                        'Reduce keyframe interval',
                        'Monitor memory usage closely'
                    ])
        
        else:  # CPU or MPS - use system memory
            usage_percent = usage.get('system_percent', 0)
            pressure_info['usage_percent'] = usage_percent
            
            if usage_percent >= threshold_percent:
                pressure_info['under_pressure'] = True
                
                if usage_percent >= 95:
                    pressure_info['pressure_level'] = 'critical'
                    pressure_info['recommendations'].extend([
                        'Free system memory immediately',
                        'Close unnecessary applications',
                        'Reduce video processing quality'
                    ])
                elif usage_percent >= threshold_percent:
                    pressure_info['pressure_level'] = 'warning'
                    pressure_info['recommendations'].extend([
                        'Run memory cleanup',
                        'Monitor system memory',
                        'Consider processing in smaller chunks'
                    ])
        
        return pressure_info
    
    def auto_cleanup_if_needed(self, pressure_threshold: float = 80.0) -> bool:
        """Automatically run cleanup if memory pressure is detected"""
        pressure = self.check_memory_pressure(pressure_threshold)
        
        if pressure['under_pressure']:
            cleanup_method = (
                self.cleanup_aggressive 
                if pressure['pressure_level'] == 'critical' 
                else self.cleanup_basic
            )
            
            logger.info(f"Auto-cleanup triggered due to {pressure['pressure_level']} "
                       f"memory pressure ({pressure['usage_percent']:.1f}%)")
            
            cleanup_method()
            return True
        
        return False
    
    def register_cleanup_callback(self, callback: Callable):
        """Register a callback to run during cleanup operations"""
        self.cleanup_callbacks.append(callback)
        logger.debug("Cleanup callback registered")
    
    def start_monitoring(self, interval_seconds: float = 30.0, 
                        pressure_callback: Optional[Callable] = None):
        """Start background memory monitoring"""
        if self.monitoring_active:
            logger.warning("Memory monitoring already active")
            return
        
        self.monitoring_active = True
        
        def monitor_loop():
            while self.monitoring_active:
                try:
                    pressure = self.check_memory_pressure()
                    
                    if pressure['under_pressure']:
                        logger.warning(f"Memory pressure detected: {pressure['pressure_level']} "
                                     f"({pressure['usage_percent']:.1f}%)")
                        
                        if pressure_callback:
                            try:
                                pressure_callback(pressure)
                            except Exception as e:
                                logger.error(f"Pressure callback failed: {e}")
                        
                        # Auto-cleanup on critical pressure
                        if pressure['pressure_level'] == 'critical':
                            self.cleanup_aggressive()
                    
                    time.sleep(interval_seconds)
                    
                except Exception as e:
                    logger.error(f"Memory monitoring error: {e}")
                    time.sleep(interval_seconds)
        
        self.monitoring_thread = threading.Thread(target=monitor_loop, daemon=True)
        self.monitoring_thread.start()
        
        logger.info(f"Memory monitoring started (interval: {interval_seconds}s)")
    
    def stop_monitoring(self):
        """Stop background memory monitoring"""
        if self.monitoring_active:
            self.monitoring_active = False
            if self.monitoring_thread and self.monitoring_thread.is_alive():
                self.monitoring_thread.join(timeout=5.0)
            logger.info("Memory monitoring stopped")
    
    def estimate_memory_requirement(self, video_width: int, video_height: int, 
                                  frames_in_memory: int = 5) -> Dict[str, float]:
        """Estimate memory requirements for video processing"""
        
        # Base memory per frame (RGB image)
        bytes_per_frame = video_width * video_height * 3
        
        # Additional overhead for processing
        overhead_multiplier = 3.0  # For masks, intermediate results, etc.
        
        estimated_memory = {
            'frames_memory_gb': (bytes_per_frame * frames_in_memory * overhead_multiplier) / (1024**3),
            'model_memory_gb': 4.0,  # Rough estimate for SAM2 + MatAnyone
            'system_overhead_gb': 2.0,
            'total_estimated_gb': 0.0
        }
        
        estimated_memory['total_estimated_gb'] = sum([
            estimated_memory['frames_memory_gb'],
            estimated_memory['model_memory_gb'],
            estimated_memory['system_overhead_gb']
        ])
        
        return estimated_memory
    
    def can_process_video(self, video_width: int, video_height: int, 
                         frames_in_memory: int = 5) -> Dict[str, Any]:
        """Check if video can be processed with current memory"""
        
        estimate = self.estimate_memory_requirement(video_width, video_height, frames_in_memory)
        current_usage = self.get_memory_usage()
        
        # Available memory calculation
        if self.device.type == 'cuda':
            available_memory = current_usage.get('gpu_free_gb', 0)
        else:
            available_memory = current_usage.get('system_available_gb', 0)
        
        can_process = estimate['total_estimated_gb'] <= available_memory
        
        result = {
            'can_process': can_process,
            'estimated_memory_gb': estimate['total_estimated_gb'],
            'available_memory_gb': available_memory,
            'memory_margin_gb': available_memory - estimate['total_estimated_gb'],
            'recommendations': []
        }
        
        if not can_process:
            deficit = estimate['total_estimated_gb'] - available_memory
            result['recommendations'] = [
                f"Free {deficit:.1f}GB of memory",
                "Reduce video resolution",
                "Process in smaller chunks",
                "Use lower quality settings"
            ]
        elif result['memory_margin_gb'] < 1.0:
            result['recommendations'] = [
                "Memory margin is low",
                "Monitor memory usage during processing",
                "Consider reducing batch size"
            ]
        
        return result
    
    def get_optimization_suggestions(self) -> Dict[str, Any]:
        """Get memory optimization suggestions based on current state"""
        usage = self.get_memory_usage()
        
        suggestions = {
            'current_usage_percent': usage.get('gpu_utilization_percent', usage.get('system_percent', 0)),
            'suggestions': [],
            'priority': 'low'  # low, medium, high
        }
        
        usage_percent = suggestions['current_usage_percent']
        
        if usage_percent >= 90:
            suggestions['priority'] = 'high'
            suggestions['suggestions'].extend([
                'Run aggressive memory cleanup immediately',
                'Reduce batch size to 1',
                'Enable gradient checkpointing if available',
                'Consider switching to CPU processing'
            ])
        elif usage_percent >= 75:
            suggestions['priority'] = 'medium'
            suggestions['suggestions'].extend([
                'Run memory cleanup regularly',
                'Monitor memory usage closely',
                'Reduce keyframe interval',
                'Use mixed precision if supported'
            ])
        elif usage_percent >= 50:
            suggestions['priority'] = 'low'
            suggestions['suggestions'].extend([
                'Current usage is acceptable',
                'Regular cleanup should be sufficient',
                'Monitor for memory leaks during long operations'
            ])
        else:
            suggestions['suggestions'] = [
                'Memory usage is optimal',
                'No immediate action required'
            ]
        
        return suggestions
    
    def get_stats(self) -> Dict[str, Any]:
        """Get memory management statistics"""
        return {
            'cleanup_count': self.stats['cleanup_count'],
            'peak_memory_usage_gb': self.stats['peak_memory_usage'],
            'monitoring_active': self.monitoring_active,
            'device_type': self.device.type,
            'memory_limit_gb': self.memory_limit_gb,
            'registered_callbacks': len(self.cleanup_callbacks)
        }
    
    def __del__(self):
        """Cleanup when MemoryManager is destroyed"""
        try:
            self.stop_monitoring()
            self.cleanup_aggressive()
        except Exception:
            pass  # Ignore errors during cleanup