File size: 47,835 Bytes
47df7fb bb1a40e 47df7fb bb1a40e 47df7fb bb1a40e 47df7fb bb1a40e 47df7fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 |
#!/usr/bin/env python3
"""
Video Background Replacer (GPU-Optimized)
- MatAnyone (primary), SAM2 (mask seeding), rembg (fallback)
- K-Governor guards torch.topk/kthvalue (no __wrapped__ assumption)
- Adaptive MatAnyone loader (from_pretrained | constructor network/model | repo-id)
- Optional repo pinning via MATANYONE_COMMIT / SAM2_COMMIT
- First-run warmup → READY ✅ before first request
- Robust Gradio input coercion (path | dict | file-like | PIL | NumPy)
- Alpha probing & (optional) stitching alpha_*.png sequences to a video
- Short-clip stabilizer (pre-roll) with correct trim
- Concurrency lock for MatAnyone core
"""
# =========================
# EARLY env & imports
# =========================
import os, sys, re, time, gc, shutil, subprocess, tempfile, threading, traceback, inspect, glob
from pathlib import Path
# ---- Thread/env sanitization (must run BEFORE numpy/torch/cv2) ----
def _safe_int_env(var: str, default: int = 2, cap: int = 8) -> int:
v = os.environ.get(var, "").strip()
if not v or not re.fullmatch(r"\d+", v):
os.environ[var] = str(default); return default
iv = max(1, min(int(v), cap))
os.environ[var] = str(iv); return iv
_safe_int_env("OMP_NUM_THREADS", 2, 8)
_safe_int_env("MKL_NUM_THREADS", 2, 8)
# General runtime defaults
os.environ.setdefault("PYTORCH_CUDA_ALLOC_CONF", "expandable_segments:True,max_split_size_mb:512")
os.environ.setdefault("CUDA_MODULE_LOADING", "LAZY")
os.environ.setdefault("PYTHONUNBUFFERED", "1")
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
# MatAnyone prefs
os.environ.setdefault("MATANYONE_MAX_EDGE", "1024")
os.environ.setdefault("MATANYONE_TARGET_PIXELS", "1000000")
os.environ.setdefault("MATANYONE_WINDOWED", "1")
os.environ.setdefault("MATANYONE_WINDOW", "16")
os.environ.setdefault("MAX_MODEL_SIZE", "1920")
# CUDA + cuDNN
os.environ.setdefault("CUDA_LAUNCH_BLOCKING", "0")
os.environ.setdefault("TORCH_CUDNN_V8_API_ENABLED", "1")
os.environ.setdefault("CUDNN_BENCHMARK", "1")
# HF cache
os.environ.setdefault("HF_HOME", "./checkpoints/hf")
os.environ.setdefault("TRANSFORMERS_CACHE", "./checkpoints/hf")
os.environ.setdefault("HF_DATASETS_CACHE", "./checkpoints/hf")
os.environ.setdefault("HF_HUB_DISABLE_SYMLINKS", "1")
os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "1")
os.environ.setdefault("HF_HUB_DISABLE_TELEMETRY", "1")
# Gradio
os.environ.setdefault("GRADIO_SERVER_NAME", "0.0.0.0")
os.environ.setdefault("GRADIO_SERVER_PORT", "7860")
# Features
os.environ.setdefault("USE_MATANYONE", "true")
os.environ.setdefault("USE_SAM2", "true")
os.environ.setdefault("SELF_CHECK_MODE", "false")
# Stabilizer defaults
os.environ.setdefault("MATANYONE_STABILIZE", "true")
os.environ.setdefault("MATANYONE_PREROLL_FRAMES", "12")
# Optional strict re-sanitization later
os.environ.setdefault("STRICT_ENV_GUARD", "1")
# =========================
# Std imports (safe now)
# =========================
import cv2
import numpy as np
from PIL import Image
import gradio as gr
from moviepy.editor import VideoFileClip, ImageSequenceClip, concatenate_videoclips
print("=" * 50)
print("Application Startup at", os.popen('date').read().strip())
print("=" * 50)
print("Environment Configuration:")
print(f"Python: {sys.version}")
print(f"Working directory: {os.getcwd()}")
print(f"CUDA_MODULE_LOADING: {os.getenv('CUDA_MODULE_LOADING')}")
print(f"OMP_NUM_THREADS: {os.getenv('OMP_NUM_THREADS')}")
print("=" * 50)
# =========================
# Third-party repos & optional pinning
# =========================
BASE_DIR = Path(__file__).resolve().parent
TP_DIR = BASE_DIR / "third_party"
CHECKPOINTS_DIR = BASE_DIR / "checkpoints"
TP_DIR.mkdir(exist_ok=True); CHECKPOINTS_DIR.mkdir(exist_ok=True)
def _git_clone_if_missing(url: str, path: Path, name: str):
if path.exists():
return
print(f"Cloning {name}…")
try:
subprocess.run(["git", "clone", "--depth", "1", url, str(path)], check=True, timeout=300)
print(f"{name} cloned successfully")
except Exception as e:
print(f"Failed to clone {name}: {e}")
_git_clone_if_missing("https://github.com/facebookresearch/segment-anything-2.git", TP_DIR/"sam2", "SAM2")
_git_clone_if_missing("https://github.com/pq-yang/MatAnyone.git", TP_DIR/"matanyone", "MatAnyone")
def _checkout(repo_dir: Path, commit: str):
if not commit:
print(f"{repo_dir.name} not pinned (env is empty) — using current HEAD.")
return
try:
subprocess.run(["git", "-C", str(repo_dir), "fetch", "--depth", "1", "origin", commit], check=True)
subprocess.run(["git", "-C", str(repo_dir), "checkout", "--detach", commit], check=True)
print(f"Locked {repo_dir.name} to {commit}")
except Exception as e:
print(f"Warning: failed to lock {repo_dir.name} to {commit}: {e}")
MATANYONE_COMMIT = os.getenv("MATANYONE_COMMIT", "").strip()
SAM2_COMMIT = os.getenv("SAM2_COMMIT", "").strip()
_checkout(TP_DIR / "matanyone", MATANYONE_COMMIT)
_checkout(TP_DIR / "sam2", SAM2_COMMIT)
# Ensure vendored paths are importable
for p in [TP_DIR / "sam2", TP_DIR / "matanyone"]:
if p.exists() and str(p) not in sys.path:
sys.path.insert(0, str(p)); print(f"Added to path: {p}")
# =========================
# K-Governor (with bypass; robust for PyTorch 2.2)
# =========================
if os.getenv("SAFE_TOPK_BYPASS", "0") not in ("1","true","TRUE"):
import re as _re
def _write_safe_ops_file(pkg_root: Path):
utils_dir = pkg_root / "matanyone" / "utils"
if not utils_dir.exists(): utils_dir = pkg_root / "utils"
utils_dir.mkdir(parents=True, exist_ok=True)
(utils_dir / "safe_ops.py").write_text(
"""
import os
import torch
_VERBOSE = bool(int(os.environ.get("SAFE_TOPK_VERBOSE", "1")))
# Robust for builds where topk/kthvalue are builtins without attributes.
_ORIG_TOPK = getattr(torch.topk, "__wrapped__", torch.topk)
_ORIG_KTH = getattr(torch.kthvalue, "__wrapped__", torch.kthvalue)
def _log(msg):
if _VERBOSE:
print(f"[K-Governor] {msg}")
def safe_topk(x, k, dim=None, largest=True, sorted=True):
if not isinstance(k, int):
k = int(k)
if dim is None:
dim = -1
n = x.size(dim)
k_eff = max(1, min(k, int(n)))
if k_eff != k:
_log(f"torch.topk: clamp k {k} -> {k_eff} for dim={dim} shape={tuple(x.shape)}")
values, indices = _ORIG_TOPK(x, k_eff, dim=dim, largest=largest, sorted=sorted)
if k_eff < k:
pad = k - k_eff
pad_shape = list(values.shape); pad_shape[dim] = pad
pad_vals = values.new_full(pad_shape, float('-inf'))
pad_idx = indices.new_zeros(pad_shape, dtype=indices.dtype)
values = torch.cat([values, pad_vals], dim=dim)
indices = torch.cat([indices, pad_idx], dim=dim)
return values, indices
def safe_kthvalue(x, k, dim=None, keepdim=False):
if not isinstance(k, int):
k = int(k)
if dim is None:
dim = -1
n = x.size(dim)
k_eff = max(1, min(k, int(n)))
if k_eff != k:
_log(f"torch.kthvalue: clamp k {k} -> {k_eff} for dim={dim} shape={tuple(x.shape)}")
return _ORIG_KTH(x, k_eff, dim=dim, keepdim=keepdim)
""".lstrip(), encoding="utf-8")
def _patch_matanyone_sources(repo_dir: Path) -> int:
root = repo_dir / "matanyone"
if not root.exists(): root = repo_dir
changed = 0
header_import = "from matanyone.utils.safe_ops import safe_topk, safe_kthvalue\n"
pt = _re.compile(r"\btorch\.topk\s*\(")
pm = _re.compile(r"(\b[\w\.]+)\.topk\s*\(")
kt = _re.compile(r"\btorch\.kthvalue\s*\(")
km = _re.compile(r"(\b[\w\.]+)\.kthvalue\s*\(")
for py in root.rglob("*.py"):
try:
txt = py.read_text(encoding="utf-8"); orig = txt
if "safe_topk" not in txt and py.name != "__init__.py":
lines = txt.splitlines(keepends=True)
insert_at = 0
for i, L in enumerate(lines[:80]):
if L.startswith(("import ","from ")): insert_at = i+1
lines.insert(insert_at, header_import)
txt = "".join(lines)
txt = pt.sub("safe_topk(", txt)
txt = kt.sub("safe_kthvalue(", txt)
def _mt(m): return f"safe_topk({m.group(1)}, "
def _mk(m): return f"safe_kthvalue({m.group(1)}, "
txt = pm.sub(_mt, txt); txt = km.sub(_mk, txt)
if txt != orig:
py.write_text(txt, encoding="utf-8"); changed += 1
except Exception as e:
print(f"[K-Governor] Patch warning on {py}: {e}")
return changed
try:
MATANY_REPO_DIR = TP_DIR / "matanyone"
_write_safe_ops_file(MATANY_REPO_DIR)
patched_files = _patch_matanyone_sources(MATANY_REPO_DIR)
print(f"[K-Governor] Patched MatAnyone sources: {patched_files} files updated.")
except Exception as e:
print(f"[K-Governor] Patch failed: {e}")
else:
print("[K-Governor] BYPASSED via SAFE_TOPK_BYPASS")
# =========================
# Torch & device
# =========================
TORCH_AVAILABLE = False; CUDA_AVAILABLE = False; GPU_NAME = "N/A"; DEVICE = "cpu"
try:
import torch
TORCH_AVAILABLE = True
CUDA_AVAILABLE = torch.cuda.is_available()
if CUDA_AVAILABLE:
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
GPU_NAME = torch.cuda.get_device_name(0); DEVICE = "cuda"
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1024**3
print(f"GPU: {GPU_NAME}")
print(f"VRAM: {gpu_memory:.1f} GB")
print(f"CUDA Capability: {torch.cuda.get_device_capability(0)}")
try: torch.cuda.set_per_process_memory_fraction(0.9)
except Exception: pass
print(f"Torch version: {torch.__version__}")
print(f"CUDA available: {CUDA_AVAILABLE}")
print(f"Device: {DEVICE}")
except Exception as e:
print(f"Torch not available: {e}")
# =========================
# Light GPU monitor
# =========================
class GPUMonitor:
def __init__(self):
self.monitoring = False
self.stats = {"gpu_util": 0, "memory_used": 0, "memory_total": 0}
def start_monitoring(self):
if not CUDA_AVAILABLE: return
self.monitoring = True
threading.Thread(target=self._monitor_loop, daemon=True).start()
def stop_monitoring(self): self.monitoring = False
def _monitor_loop(self):
while self.monitoring:
try:
if CUDA_AVAILABLE:
mem_used = torch.cuda.memory_allocated(0) / 1024**3
mem_total = torch.cuda.get_device_properties(0).total_memory / 1024**3
self.stats.update({
"memory_used": mem_used, "memory_total": mem_total,
"memory_percent": (mem_used/mem_total)*100 if mem_total else 0
})
try:
import pynvml
pynvml.nvmlInit()
h = pynvml.nvmlDeviceGetHandleByIndex(0)
util = pynvml.nvmlDeviceGetUtilizationRates(h)
self.stats["gpu_util"] = util.gpu
except Exception:
pass
except Exception as e:
print(f"GPU monitoring error: {e}")
time.sleep(1)
def get_stats(self): return self.stats.copy()
gpu_monitor = GPUMonitor(); gpu_monitor.start_monitoring()
# =========================
# SAM2 (verified micro-inference)
# =========================
SAM2_IMPORTED = False; SAM2_AVAILABLE = False; SAM2_PREDICTOR = None
if TORCH_AVAILABLE and os.getenv("USE_SAM2","true").lower()=="true":
try:
print("Setting up SAM2…")
from hydra import initialize_config_dir, compose
from hydra.core.global_hydra import GlobalHydra
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
SAM2_IMPORTED = True
ckpt = Path("./checkpoints/sam2.1_hiera_tiny.pt")
ckpt.parent.mkdir(parents=True, exist_ok=True)
if not ckpt.exists():
print("Downloading SAM2.1 checkpoint…")
import requests
url = "https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_tiny.pt"
r = requests.get(url, stream=True, timeout=60); r.raise_for_status()
with open(ckpt, "wb") as f:
for ch in r.iter_content(chunk_size=8192):
if ch: f.write(ch)
print(f"SAM2 checkpoint downloaded to {ckpt}")
if GlobalHydra().is_initialized():
GlobalHydra.instance().clear()
config_dir = str(TP_DIR / "sam2" / "sam2" / "configs")
config_file = "sam2.1/sam2.1_hiera_t.yaml"
initialize_config_dir(config_dir=config_dir, version_base=None)
_ = compose(config_name=config_file)
model = build_sam2(config_file, str(ckpt), device="cuda" if CUDA_AVAILABLE else "cpu")
if CUDA_AVAILABLE and hasattr(torch, "compile"):
try: model = torch.compile(model, mode="max-autotune")
except Exception as _e: print(f"torch.compile not used: {_e}")
SAM2_PREDICTOR = SAM2ImagePredictor(model)
try:
dummy = np.zeros((64,64,3), dtype=np.uint8)
SAM2_PREDICTOR.set_image(dummy)
pts = np.array([[32,32]], dtype=np.int32); lbs = np.array([1], dtype=np.int32)
_m,_s,_l = SAM2_PREDICTOR.predict(point_coords=pts, point_labels=lbs, multimask_output=True)
SAM2_AVAILABLE = True; print("✅ SAM2 verified via micro-inference.")
except Exception as ver_e:
SAM2_AVAILABLE = False; SAM2_PREDICTOR = None
print(f"SAM2 verification failed: {ver_e}")
except Exception as e:
print(f"SAM2 setup failed: {e}")
# =========================
# MatAnyone import (canonical first, fallback)
# =========================
MATANYONE_IMPORTED = False; MatAnyInferenceCore = None
try:
from matanyone.inference.inference_core import InferenceCore as MatAnyInferenceCore
MATANYONE_IMPORTED = True
print("MatAnyone import OK: matanyone.inference.inference_core.InferenceCore")
except Exception as e1:
try:
from matanyone import InferenceCore as MatAnyInferenceCore
MATANYONE_IMPORTED = True
print("MatAnyone import OK: matanyone.InferenceCore")
except Exception as e2:
print(f"MatAnyone not importable: {e2 or e1}")
# =========================
# rembg fallback
# =========================
REMBG_AVAILABLE = False
try:
from rembg import remove
REMBG_AVAILABLE = True; print("rembg import OK (fallback ready).")
except Exception as e:
print(f"rembg not available: {e}")
# =========================
# Background helpers
# =========================
def make_solid(w, h, rgb): return np.full((h, w, 3), rgb, dtype=np.uint8)
def make_vertical_gradient(w, h, top_rgb, bottom_rgb):
top = np.array(top_rgb, dtype=np.float32); bot = np.array(bottom_rgb, dtype=np.float32)
t = np.linspace(0,1,h,dtype=np.float32)[:,None]
grad = (1-t)*top + t*bot; grad = np.clip(grad,0,255).astype(np.uint8)
return np.repeat(grad[None,...], w, axis=0).transpose(1,0,2)
def build_professional_bg(w, h, preset: str) -> np.ndarray:
p = (preset or "").lower()
if p == "office (soft gray)": return make_vertical_gradient(w,h,(245,246,248),(220,223,228))
if p == "studio (charcoal)": return make_vertical_gradient(w,h,(32,32,36),(64,64,70))
if p == "nature (green tint)":return make_vertical_gradient(w,h,(180,220,190),(100,160,120))
if p == "brand blue": return make_solid(w,h,(18,112,214))
return make_solid(w,h,(240,240,240))
# =========================
# MatAnyone wrapper (+ lock, adaptive constructor, alpha stitching)
# =========================
class OptimizedMatAnyoneProcessor:
def __init__(self):
self.processor = None
self.device = "cuda" if (TORCH_AVAILABLE and CUDA_AVAILABLE) else "cpu"
self.initialized = False
self.verified = False
self.last_error = None
self.stabilize = os.getenv("MATANYONE_STABILIZE","true").lower()=="true"
try: self.preroll_frames = max(0, int(os.getenv("MATANYONE_PREROLL_FRAMES","12")))
except Exception: self.preroll_frames = 12
self._lock = threading.Lock()
# ---- Adaptive core constructor
def _construct_inference_core(self, network_or_repo):
# prefer classmethod if available
try:
if hasattr(MatAnyInferenceCore, "from_pretrained"):
return MatAnyInferenceCore.from_pretrained(
network_or_repo,
device=("cuda" if CUDA_AVAILABLE else "cpu")
)
except Exception:
pass
# try constructor with introspection
try:
sig = inspect.signature(MatAnyInferenceCore)
if isinstance(network_or_repo, str):
return MatAnyInferenceCore(network_or_repo)
if "network" in sig.parameters:
return MatAnyInferenceCore(network=network_or_repo)
if "model" in sig.parameters:
return MatAnyInferenceCore(model=network_or_repo)
return MatAnyInferenceCore(network_or_repo)
except Exception as e:
raise RuntimeError(f"InferenceCore construction failed: {type(e).__name__}: {e}")
# ---- Normalize return + disk probe + png sequence stitch
def _stitch_alpha_sequence(self, outdir: str, fps: float) -> str | None:
# common patterns
patt_list = ["alpha_%04d.png", "alpha_%03d.png", "alpha_%05d.png", "alpha_*.png"]
frames = []
for patt in patt_list:
frames = sorted(glob.glob(os.path.join(outdir, patt.replace("%0", "*").replace("d",""))))
if frames:
break
if not frames:
return None
# read as float [0,1]
ary = []
for p in frames:
im = cv2.imread(p, cv2.IMREAD_GRAYSCALE)
if im is None: continue
ary.append((im.astype(np.float32) / 255.0))
if not ary:
return None
clip = ImageSequenceClip([f for f in ary], fps=max(1, int(round(fps or 24))))
alpha_mp4 = tempfile.NamedTemporaryFile(delete=False, suffix="_alpha_seq.mp4").name
clip.write_videofile(alpha_mp4, audio=False, logger=None)
clip.close()
return alpha_mp4
def _normalize_ret_and_probe(self, ret, outdir: str, fallback_fps: float = 24.0):
fg_path = alpha_path = None
if isinstance(ret, (list, tuple)):
if len(ret) >= 2: fg_path, alpha_path = ret[0], ret[1]
elif len(ret) == 1: alpha_path = ret[0]
elif isinstance(ret, str):
alpha_path = ret
def _valid(p: str) -> bool:
return p and os.path.exists(p) and os.path.getsize(p) > 0
# probe common video names
if not _valid(alpha_path):
for cand in ("alpha.mp4","alpha.mkv","alpha.mov","alpha.webm"):
p = os.path.join(outdir, cand)
if _valid(p):
alpha_path = p; break
# try stitching sequences if needed
if not _valid(alpha_path):
stitched = self._stitch_alpha_sequence(outdir, fallback_fps)
if stitched and _valid(stitched):
alpha_path = stitched
return fg_path, alpha_path
def _warmup(self) -> None:
import numpy as _np, cv2 as _cv2, os as _os
from moviepy.editor import ImageSequenceClip as _ISC
with tempfile.TemporaryDirectory() as td:
frames = []
for t in range(8):
fr = _np.zeros((64,64,3), _np.uint8); x = 8 + t*4
_cv2.rectangle(fr, (x,20), (x+12,44), 200, -1); frames.append(fr)
vid = _os.path.join(td,"warmup.mp4"); _ISC(frames, fps=10).write_videofile(vid, audio=False, logger=None)
m = _np.zeros((64,64), _np.uint8); _cv2.rectangle(m,(24,24),(40,40),255,-1)
mask = _os.path.join(td,"mask.png"); _cv2.imwrite(mask, m)
outdir = _os.path.join(td,"out"); os.makedirs(outdir, exist_ok=True)
# ensure method exists
if not hasattr(self.processor, "process_video"):
if hasattr(self.processor, "process"):
self.processor.process_video = self.processor.process
else:
raise RuntimeError("MatAnyone core lacks process_video/process")
ret = self.processor.process_video(input_path=vid, mask_path=mask, output_path=outdir, max_size=512)
_fg, alpha = self._normalize_ret_and_probe(ret, outdir, fallback_fps=10)
if not alpha or not os.path.exists(alpha) or os.path.getsize(alpha) == 0:
raise RuntimeError("Warmup: MatAnyone produced no alpha")
def initialize(self) -> bool:
with self._lock:
if not MATANYONE_IMPORTED:
print("MatAnyone not importable; skipping init."); return False
if self.initialized and self.processor is not None:
return True
self.last_error = None
# HF path first
try:
print(f"Initializing MatAnyone (HF repo-id) on {self.device}…")
self.processor = self._construct_inference_core("PeiqingYang/MatAnyone")
if self.device == "cuda":
import torch as _t
_t.cuda.empty_cache(); _ = _t.rand(1, device="cuda") * 0.0
# alias method if needed
if not hasattr(self.processor, "process_video") and hasattr(self.processor, "process"):
self.processor.process_video = self.processor.process
self._warmup()
self.verified = True; self.initialized = True
print("✅ MatAnyone initialized & warmed up (HF repo-id).")
return True
except Exception as e:
self.last_error = f"HF init failed: {type(e).__name__}: {e}"
print(self.last_error)
# Local ckpt fallback
try:
print("Falling back to local checkpoint init for MatAnyone…")
from hydra.core.global_hydra import GlobalHydra
if hasattr(GlobalHydra,"instance") and GlobalHydra().is_initialized():
GlobalHydra.instance().clear()
import requests
from matanyone.utils.get_default_model import get_matanyone_model
ckpt_dir = Path("./pretrained_models"); ckpt_dir.mkdir(parents=True, exist_ok=True)
ckpt_path = ckpt_dir / "matanyone.pth"
if not ckpt_path.exists():
url = "https://github.com/pq-yang/MatAnyone/releases/download/v1.0.0/matanyone.pth"
print(f"Downloading MatAnyone checkpoint from: {url}")
with requests.get(url, stream=True, timeout=180) as r:
r.raise_for_status()
with open(ckpt_path, "wb") as f:
for chunk in r.iter_content(chunk_size=8192):
if chunk: f.write(chunk)
print(f"Checkpoint saved to {ckpt_path}")
network = get_matanyone_model(str(ckpt_path), device=("cuda" if CUDA_AVAILABLE else "cpu"))
self.processor = self._construct_inference_core(network)
if self.device == "cuda":
import torch as _t
_t.cuda.empty_cache(); _ = _t.rand(1, device="cuda") * 0.0
if not hasattr(self.processor, "process_video") and hasattr(self.processor, "process"):
self.processor.process_video = self.processor.process
self._warmup()
self.verified = True; self.initialized = True
print("✅ MatAnyone initialized & warmed up (local checkpoint).")
return True
except Exception as e:
self.last_error = f"Local init/warmup failed: {type(e).__name__}: {e}"
print(f"MatAnyone initialization failed: {self.last_error}")
traceback.print_exc(); return False
# ---- Pre-roll & trimming
@staticmethod
def _build_preroll_concat(input_path: str, frames: int) -> tuple[str, float, float]:
clip = VideoFileClip(input_path)
fps = float(clip.fps or 24.0)
preroll_frames = max(0, frames)
if preroll_frames == 0:
out = input_path; clip.close(); return out, 0.0, fps
first = clip.get_frame(0)
pre = ImageSequenceClip([first]*preroll_frames, fps=max(1, int(round(fps))))
concat = concatenate_videoclips([pre, clip])
tmp = tempfile.NamedTemporaryFile(delete=False, suffix="_concat.mp4")
concat.write_videofile(tmp.name, audio=False, logger=None)
pre.close(); concat.close(); clip.close()
return tmp.name, preroll_frames / fps, fps
@staticmethod
def _trim_head(video_path: str, seconds: float) -> str:
if seconds <= 0: return video_path
clip = VideoFileClip(video_path); dur = clip.duration or 0
start = min(seconds, max(0.0, dur - 0.001))
trimmed = tempfile.NamedTemporaryFile(delete=False, suffix="_trim.mp4").name
clip.subclip(start, None).write_videofile(trimmed, audio=False, logger=None)
clip.close(); return trimmed
def create_mask_optimized(self, video_path: str, output_path: str) -> str:
cap = cv2.VideoCapture(video_path); ret, frame = cap.read(); cap.release()
if not ret: raise ValueError("Could not read first frame from video.")
if SAM2_AVAILABLE and SAM2_PREDICTOR is not None:
try:
print("Creating mask with SAM2 (first frame)…")
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
SAM2_PREDICTOR.set_image(rgb)
h, w = rgb.shape[:2]
pts = np.array([[w//2, h//2],[w//3, h//3],[2*w//3, 2*h//3]], dtype=np.int32)
lbs = np.array([1,1,1], dtype=np.int32)
masks, scores, _ = SAM2_PREDICTOR.predict(point_coords=pts, point_labels=lbs, multimask_output=True)
best = masks[np.argmax(scores)]
mask = ((best.astype(np.uint8) > 0).astype(np.uint8)) * 255 # 1ch u8 {0,255}
cv2.imwrite(output_path, mask)
print(f"Self-test mask uniques: {np.unique(mask//255)}")
return output_path
except Exception as e:
print(f"SAM2 mask creation failed; fallback rectangle. Error: {e}")
# Fallback: centered box
h, w = frame.shape[:2]
mask = np.zeros((h,w), dtype=np.uint8)
mx, my = int(w*0.15), int(h*0.10)
mask[my:h-my, mx:w-mx] = 255
cv2.imwrite(output_path, mask); return output_path
def process_video_optimized(self, input_path: str, output_dir: str):
with self._lock:
if not self.initialized and not self.initialize():
return None
try:
print("🚀 MatAnyone processing…")
if CUDA_AVAILABLE:
import torch as _t
_t.cuda.empty_cache(); gc.collect()
concat_path = input_path; preroll_sec = 0.0; fps_used = 24.0
if self.stabilize and self.preroll_frames > 0:
concat_path, preroll_sec, fps_used = self._build_preroll_concat(input_path, self.preroll_frames)
print(f"[Stabilizer] Pre-rolled {self.preroll_frames} frames ({preroll_sec:.3f}s).")
mask_path = os.path.join(output_dir, "mask.png")
self.create_mask_optimized(input_path, mask_path)
if not hasattr(self.processor, "process_video") and hasattr(self.processor, "process"):
self.processor.process_video = self.processor.process
ret = self.processor.process_video(
input_path=concat_path,
mask_path=mask_path,
output_path=output_dir,
max_size=int(os.getenv("MAX_MODEL_SIZE","1920"))
)
fg_path, alpha_path = self._normalize_ret_and_probe(ret, output_dir, fallback_fps=fps_used)
if not alpha_path or not os.path.exists(alpha_path):
raise RuntimeError("MatAnyone finished without a valid alpha video on disk.")
if preroll_sec > 0.0:
alpha_path = self._trim_head(alpha_path, preroll_sec)
print(f"[Stabilizer] Trimmed {preroll_sec:.3f}s from alpha.")
if not os.path.exists(alpha_path) or os.path.getsize(alpha_path) == 0:
raise RuntimeError("Alpha exists but is empty/zero bytes after trim.")
return alpha_path
except Exception as e:
print(f"❌ MatAnyone processing failed: {e}")
traceback.print_exc()
return None
matanyone_processor = OptimizedMatAnyoneProcessor()
# =========================
# rembg helpers
# =========================
REMBG_AVAILABLE = REMBG_AVAILABLE
def process_frame_rembg_optimized(frame_bgr_u8, bg_img_rgb_u8):
if not REMBG_AVAILABLE:
return cv2.cvtColor(frame_bgr_u8, cv2.COLOR_BGR2RGB)
try:
frame_rgb = cv2.cvtColor(frame_bgr_u8, cv2.COLOR_BGR2RGB)
pil_im = Image.fromarray(frame_rgb)
from rembg import remove # lazy import in case plugin is heavy
result = remove(pil_im).convert("RGBA")
result_np = np.array(result)
if result_np.shape[2] == 4:
alpha = (result_np[:, :, 3:4].astype(np.float32) / 255.0)
comp = alpha * result_np[:, :, :3].astype(np.float32) + (1 - alpha) * bg_img_rgb_u8.astype(np.float32)
return comp.astype(np.uint8)
return result_np.astype(np.uint8)
except Exception as e:
print(f"rembg processing error: {e}")
return cv2.cvtColor(frame_bgr_u8, cv2.COLOR_BGR2RGB)
# =========================
# Compositing
# =========================
def composite_with_background(original_path, alpha_path, bg_path=None, bg_preset=None):
print("🎬 Compositing final video…")
orig_clip = VideoFileClip(original_path)
alpha_clip = VideoFileClip(alpha_path)
fps = orig_clip.fps or 24
w, h = orig_clip.size
if bg_path:
bg_img = cv2.imread(bg_path)
if bg_img is None: raise ValueError(f"Could not read background image: {bg_path}")
bg_img = cv2.cvtColor(bg_img, cv2.COLOR_BGR2RGB); bg_img = cv2.resize(bg_img, (w, h))
else:
bg_img = build_professional_bg(w, h, bg_preset)
def process_func(get_frame, t):
frame = get_frame(t)
a = alpha_clip.get_frame(t)
if a.ndim == 2: a = a[..., None]
elif a.shape[2] > 1: a = a[..., :1]
a = np.clip(a, 0.0, 1.0).astype(np.float32)
bg_f32 = (bg_img.astype(np.float32) / 255.0)
comp = a * frame.astype(np.float32) + (1.0 - a) * bg_f32
return comp.astype(np.float32)
new_clip = orig_clip.fl(process_func).set_fps(fps)
output_path = "final_output.mp4"
new_clip.write_videofile(output_path, audio=False, logger=None)
alpha_clip.close(); orig_clip.close(); new_clip.close()
return output_path
# =========================
# rembg whole-video fallback
# =========================
def process_video_rembg_fallback(video_path, bg_image_path=None, bg_preset=None):
print("🔄 Processing with rembg fallback…")
cap = cv2.VideoCapture(video_path); ret, frame = cap.read()
if not ret: cap.release(); raise ValueError("Could not read video")
h, w, _ = frame.shape; cap.release()
if bg_image_path:
bg_img = cv2.imread(bg_image_path)
if bg_img is None: raise ValueError(f"Could not read background image: {bg_image_path}")
bg_img = cv2.cvtColor(bg_img, cv2.COLOR_BGR2RGB); bg_img = cv2.resize(bg_img, (w, h))
else:
bg_img = build_professional_bg(w, h, bg_preset)
clip = VideoFileClip(video_path)
fps = clip.fps or 24
def process_func(get_frame, t):
fr = get_frame(t)
fr_u8 = (fr * 255).astype(np.uint8)
comp = process_frame_rembg_optimized(cv2.cvtColor(fr_u8, cv2.COLOR_RGB2BGR), bg_img)
return (comp.astype(np.float32) / 255.0)
new_clip = clip.fl(process_func).set_fps(fps)
output_path = "rembg_output.mp4"
new_clip.write_videofile(output_path, audio=False, logger=None)
clip.close(); new_clip.close()
return output_path
# =========================
# Self-test harness
# =========================
def _ok(flag): return "✅" if flag else "❌"
def self_test_cuda():
try:
if not TORCH_AVAILABLE: return False, "Torch not importable"
if not CUDA_AVAILABLE: return False, "CUDA not available"
import torch as _t
a = _t.randn((1024,1024), device="cuda"); b = _t.randn((1024,1024), device="cuda")
c = (a @ b).mean().item(); return True, f"CUDA matmul ok, mean={c:.6f}"
except Exception as e: return False, f"CUDA op failed: {e}"
def self_test_ffmpeg_moviepy():
try:
ff = shutil.which("ffmpeg")
if not ff: return False, "ffmpeg not found on PATH"
frames = [(np.zeros((64,64,3), np.uint8) + i).clip(0,255) for i in range(0,200,25)]
clip = ImageSequenceClip(frames, fps=4)
with tempfile.TemporaryDirectory() as td:
vp = os.path.join(td, "tiny.mp4")
clip.write_videofile(vp, audio=False, logger=None); clip.close()
clip_r = VideoFileClip(vp); _ = clip_r.get_frame(0.1); clip_r.close()
return True, "FFmpeg/MoviePy encode/decode ok"
except Exception as e: return False, f"FFmpeg/MoviePy test failed: {e}"
def self_test_rembg():
try:
if not REMBG_AVAILABLE: return False, "rembg not importable"
from rembg import remove
img = np.zeros((64,64,3), dtype=np.uint8); img[:,:] = (0,255,0)
pil = Image.fromarray(img); out = remove(pil)
ok = isinstance(out, Image.Image) and out.size == (64,64)
return ok, "rembg ok" if ok else "rembg returned unexpected output"
except Exception as e: return False, f"rembg failed: {e}"
def self_test_sam2():
try:
if not SAM2_IMPORTED: return False, "SAM2 not importable"
if not SAM2_PREDICTOR: return False, "SAM2 predictor not initialized"
dummy = np.zeros((64,64,3), dtype=np.uint8)
SAM2_PREDICTOR.set_image(dummy)
pts = np.array([[32,32]], dtype=np.int32); lbs = np.array([1], dtype=np.int32)
masks, scores, _ = SAM2_PREDICTOR.predict(point_coords=pts, point_labels=lbs, multimask_output=True)
ok = masks is not None and len(masks) > 0
return ok, "SAM2 micro-inference ok" if ok else "SAM2 predict returned no masks"
except Exception as e: return False, f"SAM2 micro-inference failed: {e}"
def self_test_matanyone():
try:
ok_init = matanyone_processor.initialize()
if not ok_init: return False, f"MatAnyone init failed: {getattr(matanyone_processor,'last_error','no details')}"
if not matanyone_processor.verified: return False, "MatAnyone missing process_video API"
with tempfile.TemporaryDirectory() as td:
frames = []
for t in range(8):
frame = np.zeros((64,64,3), dtype=np.uint8)
x = 8 + t*4; cv2.rectangle(frame, (x,20),(x+12,44), 200, -1); frames.append(frame)
vid_path = os.path.join(td,"tiny_input.mp4")
clip = ImageSequenceClip(frames, fps=8); clip.write_videofile(vid_path, audio=False, logger=None); clip.close()
mask = np.zeros((64,64), dtype=np.uint8); cv2.rectangle(mask,(24,24),(40,40),255,-1)
mask_path = os.path.join(td,"mask.png"); cv2.imwrite(mask_path, mask)
alpha = matanyone_processor.process_video_optimized(vid_path, td)
if alpha is None or not os.path.exists(alpha): return False, "MatAnyone did not produce alpha video"
_alpha_clip = VideoFileClip(alpha); _ = _alpha_clip.get_frame(0.1); _alpha_clip.close()
return True, "MatAnyone process_video ok"
except Exception as e: return False, f"MatAnyone test failed: {e}"
def run_self_test() -> str:
lines = []
lines.append("=== SELF TEST REPORT ===")
lines.append(f"Python: {sys.version.split()[0]}")
lines.append(f"Torch: {torch.__version__ if TORCH_AVAILABLE else 'N/A'} | CUDA: {CUDA_AVAILABLE} | Device: {DEVICE} | GPU: {GPU_NAME}")
lines.append(f"FFmpeg on PATH: {bool(shutil.which('ffmpeg'))}")
lines.append("")
tests = [("CUDA", self_test_cuda), ("FFmpeg/MoviePy", self_test_ffmpeg_moviepy),
("rembg", self_test_rembg), ("SAM2", self_test_sam2), ("MatAnyone", self_test_matanyone)]
for name, fn in tests:
t0 = time.time(); ok, msg = fn(); dt = time.time() - t0
lines.append(f"{_ok(ok)} {name}: {msg} [{dt:.2f}s]")
return "\n".join(lines)
# =========================
# Gradio input coercion helpers
# =========================
def _coerce_video_to_path(video_file):
if video_file is None:
return None
if isinstance(video_file, str):
return video_file
if isinstance(video_file, dict) and "name" in video_file:
return video_file["name"]
return getattr(video_file, "name", None)
def _coerce_bg_to_path(bg_image, temp_dir):
"""Return filesystem path for background image, writing it to temp_dir if needed."""
if bg_image is None:
return None
if isinstance(bg_image, str):
return bg_image
if isinstance(bg_image, dict) and "name" in bg_image:
return bg_image["name"]
if hasattr(bg_image, "name") and isinstance(bg_image.name, str):
return bg_image.name
if isinstance(bg_image, Image.Image):
p = os.path.join(temp_dir, "bg_uploaded.png")
bg_image.save(p); return p
if isinstance(bg_image, np.ndarray):
p = os.path.join(temp_dir, "bg_uploaded.png")
arr = bg_image
if arr.ndim == 3 and arr.shape[2] == 3:
cv2.imwrite(p, cv2.cvtColor(arr, cv2.COLOR_RGB2BGR))
else:
cv2.imwrite(p, arr)
return p
return None
# =========================
# Gradio callback
# =========================
def gradio_interface_optimized(video_file, bg_image, use_matanyone=True, bg_preset="Office (Soft Gray)", stabilize=True, preroll_frames=12):
try:
if video_file is None:
return None, None, "Please upload a video."
print(f"UI types: video={type(video_file)}, bg={type(bg_image)}")
with tempfile.TemporaryDirectory() as temp_dir:
video_path = _coerce_video_to_path(video_file)
if not video_path or not os.path.exists(video_path):
return None, None, "Could not read the uploaded video path."
bg_path = _coerce_bg_to_path(bg_image, temp_dir) # may be None → preset is used
# reflect UI choices
matanyone_processor.stabilize = bool(stabilize)
try:
matanyone_processor.preroll_frames = max(0, int(preroll_frames))
except Exception:
pass
start_time = time.time()
if use_matanyone and MATANYONE_IMPORTED:
if not matanyone_processor.initialized:
matanyone_processor.initialize()
if matanyone_processor.initialized and matanyone_processor.verified:
alpha_video_path = matanyone_processor.process_video_optimized(video_path, temp_dir)
if alpha_video_path is None:
out = process_video_rembg_fallback(video_path, bg_path, bg_preset=bg_preset)
method = "rembg (fallback after MatAnyone error)"
else:
out = composite_with_background(video_path, alpha_video_path, bg_path, bg_preset=bg_preset)
method = f"MatAnyone (GPU: {CUDA_AVAILABLE})"
else:
out = process_video_rembg_fallback(video_path, bg_path, bg_preset=bg_preset)
method = "rembg (MatAnyone not verified)"
else:
out = process_video_rembg_fallback(video_path, bg_path, bg_preset=bg_preset)
method = "rembg"
final_gpu = gpu_monitor.get_stats()
elapsed = time.time() - start_time
status = (
f"✅ Processing complete\n"
f"Method: {method}\n"
f"Time: {elapsed:.2f}s\n"
f"Output: {out}\n\n"
f"GPU Stats:\n"
f"• Mem: {final_gpu.get('memory_used', 0):.2f}GB / {final_gpu.get('memory_total', 0):.2f}GB"
f" ({final_gpu.get('memory_percent', 0):.1f}%)\n"
f"• Util: {final_gpu.get('gpu_util', 0)}%\n"
f"• CUDA: {CUDA_AVAILABLE}"
)
return out, out, status
except Exception as e:
traceback.print_exc()
msg = (
f"❌ Error: {e}\n"
f"- MatAnyone imported: {MATANYONE_IMPORTED}\n"
f"- MatAnyone initialized: {matanyone_processor.initialized}\n"
f"- MatAnyone verified: {matanyone_processor.verified}\n"
f"- MatAnyone last_error: {matanyone_processor.last_error}\n"
f"- SAM2 imported: {SAM2_IMPORTED}\n"
f"- SAM2 verified: {SAM2_AVAILABLE}\n"
f"- rembg: {REMBG_AVAILABLE}\n"
f"- CUDA: {CUDA_AVAILABLE}\n"
f"(see server logs for traceback)"
)
return None, None, msg
def gradio_run_self_test(): return run_self_test()
def show_matanyone_diag():
try:
ok = matanyone_processor.initialized and matanyone_processor.verified
return "READY ✅" if ok else (matanyone_processor.last_error or "Not initialized yet")
except Exception as e:
return f"Diag error: {e}"
# =========================
# UI
# =========================
with gr.Blocks(title="Video Background Replacer - GPU Optimized", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🎬 Video Background Replacer (GPU Optimized)")
gr.Markdown("All green checks are earned by real tests. No guesses.")
gpu_status = f"✅ {GPU_NAME}" if CUDA_AVAILABLE else "❌ CPU Only"
matany_status = "✅ Module Imported" if MATANYONE_IMPORTED else "❌ Not Importable"
sam2_status = "✅ Verified" if SAM2_AVAILABLE else ("⚠️ Imported but unverified" if SAM2_IMPORTED else "❌ Not Ready")
rembg_status = "✅ Ready" if REMBG_AVAILABLE else "❌ Not Available"
torch_status = "✅ GPU" if CUDA_AVAILABLE else "❌ CPU"
status_html = f"""
<div style='padding: 15px; background: #f8f9fa; border-radius: 8px; margin-bottom: 20px; border-left: 4px solid #6c757d;'>
<h4 style='margin-top: 0;'>🖥️ System Status (verified)</h4>
<strong>GPU:</strong> {gpu_status}<br>
<strong>Device:</strong> {DEVICE}<br>
<strong>MatAnyone module:</strong> {matany_status}<br>
<strong>MatAnyone ready:</strong> {"✅ Yes" if getattr(matanyone_processor, "verified", False) else "❌ No"}<br>
<strong>SAM2:</strong> {sam2_status}<br>
<strong>rembg:</strong> {rembg_status}<br>
<strong>PyTorch:</strong> {torch_status}
</div>
"""
gr.HTML(status_html)
with gr.Row():
with gr.Column():
video_input = gr.Video(label="📹 Input Video")
bg_input = gr.Image(label="🖼️ Background Image (optional)", type="filepath")
bg_preset = gr.Dropdown(
label="🎨 Background Preset (if no image)",
choices=["Office (Soft Gray)","Studio (Charcoal)","Nature (Green Tint)","Brand Blue","Plain Light"],
value="Office (Soft Gray)",
)
use_matanyone = gr.Checkbox(label="🚀 Use MatAnyone (GPU accelerated, best quality)",
value=MATANYONE_IMPORTED, interactive=MATANYONE_IMPORTED)
stabilize = gr.Checkbox(label="🧱 Stabilize short clips (pre-roll first frame)",
value=os.getenv("MATANYONE_STABILIZE","true").lower()=="true")
preroll_frames = gr.Slider(label="Pre-roll frames", minimum=0, maximum=24, step=1,
value=int(os.getenv("MATANYONE_PREROLL_FRAMES","12")))
process_btn = gr.Button("🚀 Process Video", variant="primary")
gr.Markdown("### 🔎 Self-Verification"); selftest_btn = gr.Button("Run Self-Test")
selftest_out = gr.Textbox(label="Self-Test Report", lines=16)
gr.Markdown("### 🛠 MatAnyone Diagnostics"); mat_diag_btn = gr.Button("Show MatAnyone Diagnostics")
mat_diag_out = gr.Textbox(label="MatAnyone Last Error / Status", lines=6)
with gr.Column():
output_video = gr.Video(label="✨ Result")
download_file = gr.File(label="💾 Download")
status_text = gr.Textbox(label="📊 Status & Performance", lines=8)
process_btn.click(fn=gradio_interface_optimized,
inputs=[video_input, bg_input, use_matanyone, bg_preset, stabilize, preroll_frames],
outputs=[output_video, download_file, status_text])
selftest_btn.click(fn=gradio_run_self_test, inputs=[], outputs=[selftest_out])
mat_diag_btn.click(fn=show_matanyone_diag, inputs=[], outputs=[mat_diag_out])
gr.Markdown("---")
gr.Markdown("""
**Notes**
- K-Governor clamps/pads Top-K inside MatAnyone to prevent 'k out of range' crashes.
- Short-clip stabilizer pre-roll is trimmed out of alpha automatically.
- SAM2 shows ✅ only after a real micro-inference passes.
- FFmpeg/MoviePy, CUDA, and rembg are validated by actually running them.
""")
# =========================
# Proactive warmup at boot (before UI render)
# =========================
try:
if MATANYONE_IMPORTED and os.getenv("USE_MATANYONE","true").lower()=="true":
print("Warming up MatAnyone…")
matanyone_processor.initialize()
print("MatAnyone warmup complete.")
except Exception as e:
print(f"MatAnyone warmup failed (non-fatal): {e}")
traceback.print_exc()
# =========================
# Late re-sanitization for external .env overrides
# =========================
def _re_sanitize_threads():
for v in ("OMP_NUM_THREADS", "MKL_NUM_THREADS"):
val = os.environ.get(v, "")
if not str(val).isdigit():
os.environ[v] = "2"
print(f"{v} had invalid value; reset to 2")
if os.getenv("STRICT_ENV_GUARD","1") in ("1","true","TRUE"):
_re_sanitize_threads()
# =========================
# Entrypoint / CLI self-test
# =========================
if __name__ == "__main__":
if "--self-test" in sys.argv:
report = run_self_test(); print(report)
exit_code = 0
for line in report.splitlines():
if line.startswith("❌"): exit_code = 2; break
sys.exit(exit_code)
print("\n" + "="*50)
print("🚀 Starting GPU-optimized Gradio app…")
print("URL: http://0.0.0.0:7860")
print(f"GPU Monitoring: {'Active' if CUDA_AVAILABLE else 'Disabled'}")
print("="*50 + "\n")
demo.launch(server_name="0.0.0.0", server_port=7860)
|