File size: 20,874 Bytes
8a0c470 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 |
#!/usr/bin/env python3
"""
BackgroundFX Pro - E-commerce Product Image Automation
Automates product photography workflow for e-commerce platforms:
- Batch process product images
- Apply consistent backgrounds
- Generate multiple sizes for different platforms
- Create transparent PNGs for overlays
- Generate marketing variations
"""
import os
import json
import csv
from pathlib import Path
from typing import List, Dict, Any, Optional, Tuple
from datetime import datetime
import asyncio
import aiohttp
from PIL import Image
import pandas as pd
# BackgroundFX API Configuration
API_KEY = os.getenv("BACKGROUNDFX_API_KEY")
API_URL = "https://api.backgroundfx.pro/v1"
class EcommerceProcessor:
"""
Automated product image processor for e-commerce platforms.
"""
# Platform-specific image requirements
PLATFORM_SPECS = {
'shopify': {
'main': (2048, 2048),
'thumbnail': (100, 100),
'collection': (600, 600),
'cart': (100, 100),
'formats': ['jpg', 'webp']
},
'amazon': {
'main': (2000, 2000),
'zoom': (1600, 1600),
'swatch': (30, 30),
'formats': ['jpg']
},
'ebay': {
'main': (1600, 1600),
'gallery': (800, 800),
'thumbnail': (140, 140),
'formats': ['jpg']
},
'woocommerce': {
'catalog': (300, 300),
'single': (600, 600),
'thumbnail': (150, 150),
'formats': ['jpg', 'png']
}
}
# Background presets for different product categories
BACKGROUND_PRESETS = {
'electronics': '#FFFFFF',
'fashion': 'linear-gradient(180deg, #F5F5F5, #FFFFFF)',
'jewelry': '#000000',
'furniture': '#F8F8F8',
'cosmetics': 'linear-gradient(45deg, #FFE5E5, #FFF0F5)',
'sports': '#E8F4FD',
'toys': 'linear-gradient(135deg, #667eea, #764ba2)',
'food': '#FFF8DC'
}
def __init__(self, api_key: str):
"""Initialize the processor with API credentials."""
self.api_key = api_key
self.session = None
self.stats = {
'processed': 0,
'failed': 0,
'total_time': 0
}
async def __aenter__(self):
"""Async context manager entry."""
self.session = aiohttp.ClientSession(
headers={'Authorization': f'Bearer {self.api_key}'}
)
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
"""Async context manager exit."""
if self.session:
await self.session.close()
async def process_product_catalog(
self,
csv_path: str,
output_dir: str,
platform: str = 'shopify'
) -> Dict[str, Any]:
"""
Process entire product catalog from CSV.
CSV Format:
sku,image_path,category,title,background_override
"""
print(f"π¦ Processing product catalog for {platform}")
# Read product catalog
df = pd.read_csv(csv_path)
total_products = len(df)
results = []
for idx, row in df.iterrows():
print(f"\n[{idx+1}/{total_products}] Processing {row['sku']}...")
try:
result = await self.process_product(
image_path=row['image_path'],
sku=row['sku'],
category=row.get('category', 'general'),
output_dir=output_dir,
platform=platform,
custom_background=row.get('background_override')
)
results.append(result)
self.stats['processed'] += 1
except Exception as e:
print(f" β Failed: {e}")
self.stats['failed'] += 1
results.append({
'sku': row['sku'],
'status': 'failed',
'error': str(e)
})
# Generate report
report = self.generate_report(results, output_dir)
return {
'total': total_products,
'processed': self.stats['processed'],
'failed': self.stats['failed'],
'report': report
}
async def process_product(
self,
image_path: str,
sku: str,
category: str,
output_dir: str,
platform: str,
custom_background: Optional[str] = None
) -> Dict[str, Any]:
"""Process single product image."""
start_time = datetime.now()
# Step 1: Remove background
processed_image = await self.remove_background(image_path)
# Step 2: Apply appropriate background
background = custom_background or self.BACKGROUND_PRESETS.get(
category, '#FFFFFF'
)
final_image = await self.apply_background(
processed_image['id'],
background
)
# Step 3: Generate platform-specific sizes
platform_images = await self.generate_platform_images(
final_image['url'],
sku,
platform,
output_dir
)
# Step 4: Create marketing variations
marketing_images = await self.create_marketing_variations(
processed_image['id'],
sku,
output_dir
)
elapsed = (datetime.now() - start_time).total_seconds()
return {
'sku': sku,
'status': 'success',
'processing_time': elapsed,
'platform_images': platform_images,
'marketing_images': marketing_images,
'original': image_path,
'processed': final_image['url']
}
async def remove_background(self, image_path: str) -> Dict[str, Any]:
"""Remove background from product image."""
with open(image_path, 'rb') as f:
data = aiohttp.FormData()
data.add_field('file', f, filename=Path(image_path).name)
data.add_field('quality', 'ultra')
data.add_field('model', 'u2net') # Best for products
data.add_field('return_mask', 'true')
async with self.session.post(
f"{API_URL}/process/remove-background",
data=data
) as response:
response.raise_for_status()
return await response.json()
async def apply_background(
self,
image_id: str,
background: str
) -> Dict[str, Any]:
"""Apply background to processed image."""
payload = {
'image_id': image_id,
'background': background,
'blend_mode': 'normal'
}
async with self.session.post(
f"{API_URL}/process/replace-background",
json=payload
) as response:
response.raise_for_status()
return await response.json()
async def generate_platform_images(
self,
image_url: str,
sku: str,
platform: str,
output_dir: str
) -> List[Dict[str, str]]:
"""Generate platform-specific image sizes."""
specs = self.PLATFORM_SPECS.get(platform, self.PLATFORM_SPECS['shopify'])
platform_dir = Path(output_dir) / platform / sku
platform_dir.mkdir(parents=True, exist_ok=True)
generated = []
# Download processed image
async with self.session.get(image_url) as response:
image_data = await response.read()
# Open with PIL
from io import BytesIO
img = Image.open(BytesIO(image_data))
# Generate each required size
for size_name, dimensions in specs.items():
if size_name == 'formats':
continue
# Resize image
resized = self.resize_image(img, dimensions)
# Save in required formats
for format_ext in specs['formats']:
output_path = platform_dir / f"{sku}_{size_name}.{format_ext}"
if format_ext == 'webp':
resized.save(output_path, 'WEBP', quality=90)
else:
resized.save(output_path, 'JPEG', quality=95)
generated.append({
'type': size_name,
'format': format_ext,
'path': str(output_path),
'dimensions': dimensions
})
print(f" β
Generated {len(generated)} platform images")
return generated
async def create_marketing_variations(
self,
image_id: str,
sku: str,
output_dir: str
) -> List[Dict[str, str]]:
"""Create marketing variations with different backgrounds."""
marketing_dir = Path(output_dir) / 'marketing' / sku
marketing_dir.mkdir(parents=True, exist_ok=True)
variations = [
{'name': 'lifestyle', 'bg': 'https://example.com/lifestyle-bg.jpg'},
{'name': 'seasonal_summer', 'bg': 'linear-gradient(to bottom, #87CEEB, #98FB98)'},
{'name': 'seasonal_winter', 'bg': 'linear-gradient(to bottom, #B0E0E6, #FFFFFF)'},
{'name': 'premium', 'bg': 'linear-gradient(45deg, #FFD700, #FFA500)'},
{'name': 'minimal', 'bg': '#F5F5F5'},
{'name': 'dark', 'bg': '#1a1a1a'},
{'name': 'transparent', 'bg': 'transparent'}
]
generated = []
for variation in variations:
try:
result = await self.apply_background(image_id, variation['bg'])
# Download and save
async with self.session.get(result['url']) as response:
image_data = await response.read()
output_path = marketing_dir / f"{sku}_{variation['name']}.png"
with open(output_path, 'wb') as f:
f.write(image_data)
generated.append({
'name': variation['name'],
'path': str(output_path),
'background': variation['bg']
})
except Exception as e:
print(f" β οΈ Failed to create {variation['name']}: {e}")
print(f" β
Created {len(generated)} marketing variations")
return generated
def resize_image(
self,
img: Image.Image,
target_size: Tuple[int, int]
) -> Image.Image:
"""
Resize image maintaining aspect ratio and adding padding if needed.
"""
# Calculate aspect ratios
img_ratio = img.width / img.height
target_ratio = target_size[0] / target_size[1]
if img_ratio > target_ratio:
# Image is wider - fit to width
new_width = target_size[0]
new_height = int(new_width / img_ratio)
else:
# Image is taller - fit to height
new_height = target_size[1]
new_width = int(new_height * img_ratio)
# Resize image
resized = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
# Create new image with padding
final = Image.new('RGBA', target_size, (255, 255, 255, 0))
# Calculate position to center the resized image
x = (target_size[0] - new_width) // 2
y = (target_size[1] - new_height) // 2
# Paste resized image
final.paste(resized, (x, y), resized if resized.mode == 'RGBA' else None)
return final
def generate_report(
self,
results: List[Dict[str, Any]],
output_dir: str
) -> str:
"""Generate processing report."""
report_path = Path(output_dir) / f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
successful = [r for r in results if r.get('status') == 'success']
failed = [r for r in results if r.get('status') == 'failed']
report = {
'timestamp': datetime.now().isoformat(),
'summary': {
'total': len(results),
'successful': len(successful),
'failed': len(failed),
'success_rate': f"{(len(successful) / len(results) * 100):.1f}%",
'total_processing_time': sum(r.get('processing_time', 0) for r in successful),
'average_time_per_product': sum(r.get('processing_time', 0) for r in successful) / len(successful) if successful else 0
},
'successful_products': successful,
'failed_products': failed
}
with open(report_path, 'w') as f:
json.dump(report, f, indent=2)
print(f"\nπ Report saved to: {report_path}")
return str(report_path)
class ShopifyIntegration:
"""
Direct Shopify integration for automated product image updates.
"""
def __init__(self, shop_url: str, access_token: str, backgroundfx_key: str):
"""Initialize Shopify integration."""
self.shop_url = shop_url
self.access_token = access_token
self.processor = EcommerceProcessor(backgroundfx_key)
self.shopify_api = f"https://{shop_url}/admin/api/2024-01"
async def sync_product_images(self, product_id: str = None):
"""
Sync product images with Shopify store.
"""
# Get products from Shopify
products = await self.get_shopify_products(product_id)
for product in products:
print(f"\nπ¦ Processing: {product['title']} (ID: {product['id']})")
for image in product['images']:
# Download original image
original_path = await self.download_image(image['src'])
# Process with BackgroundFX
async with self.processor as proc:
result = await proc.process_product(
image_path=original_path,
sku=product['variants'][0]['sku'],
category=product['product_type'].lower(),
output_dir='shopify_processed',
platform='shopify'
)
# Update Shopify with processed images
if result['status'] == 'success':
await self.update_shopify_image(
product['id'],
image['id'],
result['processed']
)
async def get_shopify_products(self, product_id: Optional[str] = None):
"""Fetch products from Shopify."""
endpoint = f"{self.shopify_api}/products"
if product_id:
endpoint += f"/{product_id}"
async with aiohttp.ClientSession() as session:
async with session.get(
endpoint + ".json",
headers={'X-Shopify-Access-Token': self.access_token}
) as response:
data = await response.json()
return data['products'] if 'products' in data else [data['product']]
async def download_image(self, url: str) -> str:
"""Download image from Shopify CDN."""
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
content = await response.read()
# Save to temp file
temp_path = Path('temp') / f"shopify_{datetime.now().timestamp()}.jpg"
temp_path.parent.mkdir(exist_ok=True)
with open(temp_path, 'wb') as f:
f.write(content)
return str(temp_path)
async def update_shopify_image(
self,
product_id: str,
image_id: str,
new_image_url: str
):
"""Update product image in Shopify."""
endpoint = f"{self.shopify_api}/products/{product_id}/images/{image_id}.json"
payload = {
'image': {
'id': image_id,
'src': new_image_url
}
}
async with aiohttp.ClientSession() as session:
async with session.put(
endpoint,
json=payload,
headers={'X-Shopify-Access-Token': self.access_token}
) as response:
if response.status == 200:
print(f" β
Updated image in Shopify")
else:
print(f" β Failed to update Shopify: {response.status}")
async def main():
"""
Main execution function with examples.
"""
print("=" * 60)
print("BackgroundFX Pro - E-commerce Automation")
print("=" * 60)
# Example 1: Process product catalog from CSV
print("\nπ Example 1: Batch Process Product Catalog")
async with EcommerceProcessor(API_KEY) as processor:
# Create sample CSV
sample_csv = "products.csv"
with open(sample_csv, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(['sku', 'image_path', 'category', 'title', 'background_override'])
writer.writerow(['PROD-001', 'images/shoe.jpg', 'fashion', 'Running Shoe', ''])
writer.writerow(['PROD-002', 'images/watch.jpg', 'electronics', 'Smart Watch', '#000000'])
writer.writerow(['PROD-003', 'images/bag.jpg', 'fashion', 'Leather Bag', ''])
results = await processor.process_product_catalog(
csv_path=sample_csv,
output_dir='output/ecommerce',
platform='shopify'
)
print(f"\nβ
Processed {results['processed']} products")
print(f"β Failed: {results['failed']}")
print(f"π Report: {results['report']}")
# Example 2: Single product with multiple platforms
print("\nπ¦ Example 2: Multi-Platform Product Processing")
platforms = ['shopify', 'amazon', 'ebay']
async with EcommerceProcessor(API_KEY) as processor:
for platform in platforms:
print(f"\n Processing for {platform}...")
result = await processor.process_product(
image_path='images/product.jpg',
sku='MULTI-001',
category='electronics',
output_dir='output/multiplatform',
platform=platform
)
if result['status'] == 'success':
print(f" β
Generated {len(result['platform_images'])} images")
# Example 3: Shopify Integration
print("\nποΈ Example 3: Direct Shopify Integration")
if os.getenv('SHOPIFY_SHOP_URL') and os.getenv('SHOPIFY_ACCESS_TOKEN'):
integration = ShopifyIntegration(
shop_url=os.getenv('SHOPIFY_SHOP_URL'),
access_token=os.getenv('SHOPIFY_ACCESS_TOKEN'),
backgroundfx_key=API_KEY
)
await integration.sync_product_images()
else:
print(" β οΈ Set SHOPIFY_SHOP_URL and SHOPIFY_ACCESS_TOKEN to test integration")
# Example 4: A/B Testing Different Backgrounds
print("\nπ§ͺ Example 4: A/B Testing Backgrounds")
test_backgrounds = [
{'name': 'white', 'bg': '#FFFFFF'},
{'name': 'gradient', 'bg': 'linear-gradient(180deg, #F5F5F5, #FFFFFF)'},
{'name': 'colored', 'bg': '#E8F4FD'},
{'name': 'lifestyle', 'bg': 'https://example.com/kitchen-bg.jpg'}
]
async with EcommerceProcessor(API_KEY) as processor:
# Remove background once
processed = await processor.remove_background('images/product.jpg')
# Test different backgrounds
for test in test_backgrounds:
result = await processor.apply_background(
processed['id'],
test['bg']
)
print(f" β
Created variant: {test['name']}")
print("\n" + "=" * 60)
print("E-commerce automation complete!")
print("=" * 60)
if __name__ == "__main__":
# Check API key
if not API_KEY:
print("β Please set BACKGROUNDFX_API_KEY environment variable")
exit(1)
# Run async main
asyncio.run(main()) |