File size: 13,113 Bytes
fb93504
2e1d581
 
 
 
 
 
 
 
 
 
 
 
 
 
fb93504
 
 
 
 
2e1d581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb93504
2e1d581
 
 
 
 
fb93504
2e1d581
 
 
 
 
 
 
 
 
 
 
 
 
 
fb93504
2e1d581
 
 
 
 
 
fb93504
2e1d581
 
fb93504
 
2e1d581
 
 
 
 
 
fb93504
2e1d581
 
 
 
 
 
 
 
 
 
fb93504
2e1d581
 
 
 
 
 
 
 
 
 
 
 
 
fb93504
 
2e1d581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb93504
2e1d581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb93504
2e1d581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb93504
 
2e1d581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb93504
 
2e1d581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb93504
2e1d581
 
 
 
 
 
 
 
 
 
fb93504
 
2e1d581
 
 
 
 
fb93504
2e1d581
 
 
 
 
 
 
 
 
fb93504
 
2e1d581
 
 
 
 
 
 
 
 
 
 
 
fb93504
 
2e1d581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb93504
2e1d581
 
 
 
 
 
 
 
 
fb93504
2e1d581
 
 
 
 
 
 
 
fb93504
 
2e1d581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb93504
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
#!/usr/bin/env python3
"""
Fallback strategies for BackgroundFX Pro.
Implements robust fallback mechanisms when primary processing fails.
"""

import cv2
import numpy as np
import torch
from typing import Dict, List, Optional, Tuple, Any
from dataclasses import dataclass
from enum import Enum
import logging
import traceback

# ABSOLUTE IMPORTS for Hugging Face Spaces
from utils.logger import setup_logger
from utils.device import DeviceManager
from utils.config import ConfigManager
from core.quality import QualityAnalyzer

logger = setup_logger(__name__)

class FallbackLevel(Enum):
    NONE = 0
    QUALITY_REDUCTION = 1
    METHOD_SWITCH = 2
    BASIC_PROCESSING = 3
    MINIMAL_PROCESSING = 4
    PASSTHROUGH = 5

@dataclass
class FallbackConfig:
    max_retries: int = 3
    quality_reduction_factor: float = 0.75
    min_quality: float = 0.3
    enable_caching: bool = True
    cache_size: int = 10
    timeout_seconds: float = 30.0
    gpu_fallback_to_cpu: bool = True
    progressive_downscale: bool = True
    min_resolution: Tuple[int, int] = (320, 240)

class FallbackStrategy:
    def __init__(self, config: Optional[FallbackConfig] = None):
        self.config = config or FallbackConfig()
        self.device_manager = DeviceManager()
        self.quality_analyzer = QualityAnalyzer()
        self.cache = {}
        self.fallback_history = []
        self.current_level = FallbackLevel.NONE

    def execute_with_fallback(self, func, *args, **kwargs) -> Dict[str, Any]:
        attempt = 0
        last_error = None
        original_args = args
        original_kwargs = kwargs.copy()

        while attempt < self.config.max_retries:
            try:
                logger.info(f"Attempt {attempt + 1}/{self.config.max_retries} for {func.__name__}")
                result = func(*args, **kwargs)
                self.current_level = FallbackLevel.NONE
                return {
                    'success': True,
                    'result': result,
                    'attempts': attempt + 1,
                    'fallback_level': self.current_level
                }
            except Exception as e:
                last_error = e
                logger.warning(f"Attempt {attempt + 1} failed: {str(e)}")
                fallback_result = self._apply_fallback(func, e, attempt, original_args, original_kwargs)
                if fallback_result['handled']:
                    args = fallback_result.get('new_args', args)
                    kwargs = fallback_result.get('new_kwargs', kwargs)
                else:
                    break
                attempt += 1

        logger.error(f"All attempts failed for {func.__name__}")
        return self._final_fallback(func, last_error, original_args)

    def _apply_fallback(self, func, error: Exception, attempt: int, original_args: tuple, original_kwargs: dict) -> Dict[str, Any]:
        error_type = type(error).__name__
        self.fallback_history.append({
            'function': func.__name__,
            'error': error_type,
            'attempt': attempt
        })

        if 'CUDA' in str(error) or 'GPU' in str(error):
            return self._handle_gpu_error(original_kwargs)
        elif 'memory' in str(error).lower():
            return self._handle_memory_error(original_args, original_kwargs)
        elif 'timeout' in str(error).lower():
            return self._handle_timeout_error(original_kwargs)
        elif 'model' in str(error).lower():
            return self._handle_model_error(original_kwargs)
        else:
            return self._handle_generic_error(attempt, original_kwargs)

    def _handle_gpu_error(self, kwargs: dict) -> Dict[str, Any]:
        logger.info("GPU error detected, falling back to CPU")
        if self.config.gpu_fallback_to_cpu:
            self.device_manager.device = torch.device('cpu')
            kwargs['device'] = 'cpu'
            if 'batch_size' in kwargs:
                kwargs['batch_size'] = max(1, kwargs['batch_size'] // 2)
            self.current_level = FallbackLevel.METHOD_SWITCH
            return {
                'handled': True,
                'new_kwargs': kwargs
            }
        return {'handled': False}

    def _handle_memory_error(self, args: tuple, kwargs: dict) -> Dict[str, Any]:
        logger.info("Memory error detected, reducing quality")
        image = None
        image_idx = -1
        for i, arg in enumerate(args):
            if isinstance(arg, np.ndarray) and len(arg.shape) == 3:
                image = arg
                image_idx = i
                break
        if image is not None and self.config.progressive_downscale:
            h, w = image.shape[:2]
            new_h = int(h * self.config.quality_reduction_factor)
            new_w = int(w * self.config.quality_reduction_factor)
            new_h = max(new_h, self.config.min_resolution[1])
            new_w = max(new_w, self.config.min_resolution[0])
            if new_h < h or new_w < w:
                resized = cv2.resize(image, (new_w, new_h))
                args = list(args)
                args[image_idx] = resized
                self.current_level = FallbackLevel.QUALITY_REDUCTION
                return {
                    'handled': True,
                    'new_args': tuple(args),
                    'new_kwargs': kwargs
                }
        if 'quality' in kwargs:
            kwargs['quality'] = max(
                self.config.min_quality,
                kwargs['quality'] * self.config.quality_reduction_factor
            )
        return {
            'handled': True,
            'new_kwargs': kwargs
        }

    def _handle_timeout_error(self, kwargs: dict) -> Dict[str, Any]:
        logger.info("Timeout detected, simplifying processing")
        simplifications = {
            'use_refinement': False,
            'use_temporal': False,
            'use_guided_filter': False,
            'iterations': 1,
            'num_samples': 1
        }
        for key, value in simplifications.items():
            if key in kwargs:
                kwargs[key] = value
        self.current_level = FallbackLevel.BASIC_PROCESSING
        return {
            'handled': True,
            'new_kwargs': kwargs
        }

    def _handle_model_error(self, kwargs: dict) -> Dict[str, Any]:
        logger.info("Model error detected, using simpler model")
        if 'model_type' in kwargs:
            model_hierarchy = ['large', 'base', 'small', 'tiny']
            current = kwargs.get('model_type', 'base')
            if current in model_hierarchy:
                idx = model_hierarchy.index(current)
                if idx < len(model_hierarchy) - 1:
                    kwargs['model_type'] = model_hierarchy[idx + 1]
                    self.current_level = FallbackLevel.METHOD_SWITCH
                    return {
                        'handled': True,
                        'new_kwargs': kwargs
                    }
        kwargs['use_model'] = False
        self.current_level = FallbackLevel.BASIC_PROCESSING
        return {
            'handled': True,
            'new_kwargs': kwargs
        }

    def _handle_generic_error(self, attempt: int, kwargs: dict) -> Dict[str, Any]:
        logger.info(f"Generic error, applying degradation level {attempt + 1}")
        if attempt == 0:
            self.current_level = FallbackLevel.QUALITY_REDUCTION
            if 'quality' in kwargs:
                kwargs['quality'] *= 0.8
        elif attempt == 1:
            self.current_level = FallbackLevel.METHOD_SWITCH
            kwargs['method'] = 'basic'
        else:
            self.current_level = FallbackLevel.MINIMAL_PROCESSING
            kwargs['skip_refinement'] = True
            kwargs['fast_mode'] = True
        return {
            'handled': True,
            'new_kwargs': kwargs
        }

    def _final_fallback(self, func, error: Exception, original_args: tuple) -> Dict[str, Any]:
        logger.error(f"Final fallback for {func.__name__}: {str(error)}")
        self.current_level = FallbackLevel.PASSTHROUGH
        for arg in original_args:
            if isinstance(arg, np.ndarray):
                return {
                    'success': False,
                    'result': arg,
                    'fallback_level': self.current_level,
                    'error': str(error)
                }
        return {
            'success': False,
            'result': None,
            'fallback_level': self.current_level,
            'error': str(error)
        }

class ProcessingFallback:
    def __init__(self):
        self.logger = setup_logger(f"{__name__}.ProcessingFallback")
        self.quality_analyzer = QualityAnalyzer()

    def basic_segmentation(self, image: np.ndarray) -> np.ndarray:
        try:
            if len(image.shape) == 3:
                gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
            else:
                gray = image
            mask = np.zeros(gray.shape[:2], np.uint8)
            bgd_model = np.zeros((1, 65), np.float64)
            fgd_model = np.zeros((1, 65), np.float64)
            h, w = gray.shape[:2]
            rect = (int(w * 0.1), int(h * 0.1), int(w * 0.8), int(h * 0.8))
            cv2.grabCut(image, mask, rect, bgd_model, fgd_model, 5, cv2.GC_INIT_WITH_RECT)
            mask2 = np.where((mask == 2) | (mask == 0), 0, 255).astype('uint8')
            return mask2
        except Exception as e:
            self.logger.error(f"Basic segmentation failed: {e}")
            return self._center_blob_mask(image.shape[:2])

    def _center_blob_mask(self, shape: Tuple[int, int]) -> np.ndarray:
        h, w = shape
        mask = np.zeros((h, w), dtype=np.uint8)
        center = (w // 2, h // 2)
        axes = (w // 3, h // 3)
        cv2.ellipse(mask, center, axes, 0, 0, 360, 255, -1)
        mask = cv2.GaussianBlur(mask, (21, 21), 10)
        _, mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)
        return mask

    def basic_matting(self, image: np.ndarray, mask: np.ndarray) -> np.ndarray:
        try:
            if mask.dtype != np.uint8:
                mask = (mask * 255).astype(np.uint8)
            kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
            mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
            mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
            mask = cv2.GaussianBlur(mask, (5, 5), 2)
            alpha = mask.astype(np.float32) / 255.0
            return alpha
        except Exception as e:
            self.logger.error(f"Basic matting failed: {e}")
            return mask.astype(np.float32) / 255.0

    def color_difference_keying(self, image: np.ndarray, key_color: Optional[np.ndarray] = None, threshold: float = 30) -> np.ndarray:
        try:
            if key_color is None:
                h, w = image.shape[:2]
                corners = [
                    image[0:10, 0:10],
                    image[0:10, w-10:w],
                    image[h-10:h, 0:10],
                    image[h-10:h, w-10:w]
                ]
                key_color = np.mean([np.mean(c, axis=(0, 1)) for c in corners], axis=0)
            diff = np.sqrt(np.sum((image - key_color) ** 2, axis=2))
            mask = (diff > threshold).astype(np.float32)
            mask = cv2.GaussianBlur(mask, (5, 5), 2)
            return mask
        except Exception as e:
            self.logger.error(f"Color keying failed: {e}")
            return np.ones(image.shape[:2], dtype=np.float32)

    def edge_based_segmentation(self, image: np.ndarray) -> np.ndarray:
        try:
            if len(image.shape) == 3:
                gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
            else:
                gray = image
            edges = cv2.Canny(gray, 50, 150)
            kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
            closed = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel, iterations=2)
            contours, _ = cv2.findContours(closed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
            mask = np.zeros(gray.shape, dtype=np.uint8)
            if contours:
                largest = max(contours, key=cv2.contourArea)
                cv2.drawContours(mask, [largest], -1, 255, -1)
            return mask
        except Exception as e:
            self.logger.error(f"Edge segmentation failed: {e}")
            return self._center_blob_mask(image.shape[:2])

    def cached_result(self, cache_key: str, fallback_func, *args, **kwargs) -> Any:
        if not hasattr(self, '_cache'):
            self._cache = {}
        if cache_key in self._cache:
            self.logger.info(f"Using cached result for {cache_key}")
            return self._cache[cache_key]
        try:
            result = fallback_func(*args, **kwargs)
            self._cache[cache_key] = result
            if len(self._cache) > 100:
                keys = list(self._cache.keys())
                for key in keys[:20]:
                    del self._cache[key]
            return result
        except Exception as e:
            self.logger.error(f"Cached computation failed: {e}")
            return None