File size: 9,484 Bytes
3790c48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
#!/usr/bin/env python3
"""
utils.background_factory
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Generates professional backgrounds from presets **or** a user-supplied image.
Public API
----------
create_professional_background(cfg_or_key, width, height) β np.ndarray (BGR)
All lower-case helpers are considered private to this module.
"""
from __future__ import annotations
from pathlib import Path
from typing import Dict, Any, List, Tuple, Optional
import logging, os, cv2, numpy as np
from utils.background_presets import PROFESSIONAL_BACKGROUNDS
log = logging.getLogger(__name__)
__all__ = ["create_professional_background"]
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Main entry
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def create_professional_background(
bg_config: Dict[str, Any] | str,
width: int,
height: int,
) -> np.ndarray:
"""
Accepts either β¦
β’ a **key** into PROFESSIONAL_BACKGROUNDS (e.g. "office_modern"), or
β’ a **dict** (typically supplied by UI) that may include:
β background_choice: "office_modern"
β custom_path: "/path/to/image.png"
β OR directly contain {type:"gradient", colors:[β¦]}
Returns **BGR** uint8 image (OpenCV-ready).
"""
try:
# ββ Resolve input ---------------------------------------------------
choice : str = "minimalist"
custom_path : str | None = None
direct_style : Dict[str, Any] | None = None
if isinstance(bg_config, str):
choice = bg_config.lower()
elif isinstance(bg_config, dict):
choice = bg_config.get("background_choice", bg_config.get("name", "minimalist")).lower()
custom_path = bg_config.get("custom_path")
if "type" in bg_config and "colors" in bg_config:
direct_style = bg_config # full inline style
# ββ 1) Custom image? ----------------------------------------------
if custom_path and os.path.exists(custom_path):
img = cv2.imread(custom_path, cv2.IMREAD_COLOR)
if img is not None:
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
fitted = _fit_image_letterbox(img_rgb, width, height, fill=(32,32,32))
return cv2.cvtColor(fitted, cv2.COLOR_RGB2BGR)
log.warning(f"Custom-background read failed: {custom_path}")
# ββ 2) Inline dict style? -----------------------------------------
if direct_style:
if direct_style["type"] == "color":
bg = _create_solid_background(direct_style, width, height)
else: # gradient / image
bg = _create_gradient_background(direct_style, width, height)
return _apply_bg_adjustments(bg, direct_style)
# ββ 3) Preset dict lookup -----------------------------------------
preset = PROFESSIONAL_BACKGROUNDS.get(choice, PROFESSIONAL_BACKGROUNDS["minimalist"])
if preset["type"] == "color":
bg = _create_solid_background(preset, width, height)
elif preset["type"] == "image":
path = Path(preset["path"])
if path.exists():
img_bgr = cv2.imread(str(path), cv2.IMREAD_COLOR)
if img_bgr is not None:
return cv2.resize(img_bgr, (width, height), interpolation=cv2.INTER_LANCZOS4)
log.warning(f"Preset image not found: {path}; falling back to gradient")
bg = _create_gradient_background(
{**preset, "type": "gradient", "colors": ["#3a3a3a", "#2e2e2e"]}, width, height
)
else: # gradient
bg = _create_gradient_background(preset, width, height)
return _apply_bg_adjustments(bg, preset)
except Exception as e:
log.error(f"create_professional_background: {e}")
return np.full((height, width, 3), (128,128,128), np.uint8)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Letter-boxed fit for custom images
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def _fit_image_letterbox(img_rgb: np.ndarray, dst_w: int, dst_h: int,
fill=(32,32,32)) -> np.ndarray:
h, w = img_rgb.shape[:2]
if h == 0 or w == 0:
return np.full((dst_h, dst_w, 3), fill, np.uint8)
src_a = w / h
dst_a = dst_w / dst_h
if src_a > dst_a:
new_w, new_h = dst_w, int(dst_w / src_a)
else:
new_h, new_w = dst_h, int(dst_h * src_a)
resized = cv2.resize(img_rgb, (new_w, new_h), interpolation=cv2.INTER_AREA)
canvas = np.full((dst_h, dst_w, 3), fill, np.uint8)
y0 = (dst_h-new_h)//2; x0 = (dst_w-new_w)//2
canvas[y0:y0+new_h, x0:x0+new_w] = resized
return canvas
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Background builders
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def _create_solid_background(style: Dict[str,Any], w: int, h: int) -> np.ndarray:
clr_hex = style["colors"][0].lstrip("#")
rgb = tuple(int(clr_hex[i:i+2],16) for i in (0,2,4))
return np.full((h,w,3), rgb[::-1], np.uint8) # BGR
def _create_gradient_background(style: Dict[str,Any], w:int, h:int) -> np.ndarray:
cols = [hex.lstrip("#") for hex in style["colors"]]
rgbs = [tuple(int(c[i:i+2],16) for i in (0,2,4)) for c in cols]
dirn = style.get("direction","vertical")
if dirn=="vertical": grad = _grad_vertical(rgbs, w, h)
elif dirn=="horizontal": grad = _grad_horizontal(rgbs, w, h)
elif dirn=="diagonal": grad = _grad_diagonal(rgbs, w, h)
else: grad = _grad_radial(rgbs, w, h,
soft=(dirn=="soft_radial"))
return cv2.cvtColor(grad, cv2.COLOR_RGB2BGR)
# --- gradient helpers -------------------------------------------------------
def _grad_vertical(colors, w, h):
g = np.zeros((h, w, 3), np.uint8)
for y in range(h):
g[y, :] = _interp_multi(colors, y/h)
return g
def _grad_horizontal(colors, w, h):
g = np.zeros((h, w, 3), np.uint8)
for x in range(w):
g[:, x] = _interp_multi(colors, x/w)
return g
def _grad_diagonal(colors, w, h):
y,x = np.mgrid[0:h, 0:w]
prog = np.clip((x+y)/(h+w), 0, 1)
g = np.zeros((h,w,3), np.uint8)
for c in range(3):
g[:,:,c] = _vector_interp(colors, prog, c)
return g
def _grad_radial(colors, w, h, soft=False):
cx, cy = w/2, h/2
maxd = np.hypot(cx, cy)
y,x = np.mgrid[0:h, 0:w]
prog = np.clip(np.hypot(x-cx, y-cy)/maxd, 0, 1)
if soft: prog = prog**0.7
g = np.zeros((h,w,3), np.uint8)
for c in range(3):
g[:,:,c] = _vector_interp(colors, prog, c)
return g
def _vector_interp(cols, prog, chan):
if len(cols)==1:
return np.full_like(prog, cols[0][chan], np.uint8)
segs = len(cols)-1
seg_prog = prog*segs
idx = np.clip(np.floor(seg_prog).astype(int), 0, segs-1)
local = seg_prog - idx
start = np.take([c[chan] for c in cols], idx)
end = np.take([c[chan] for c in cols[1:]+[cols[-1]]], idx)
return (start + (end-start)*local).astype(np.uint8)
def _interp_multi(cols, p):
# cols length 1..n p β[0,1]
if len(cols)==1: return cols[0]
seg = p*(len(cols)-1)
i = int(seg)
l = seg - i
c1, c2 = cols[i], cols[min(i+1, len(cols)-1)]
return tuple(int(c1[c]+(c2[c]-c1[c])*l) for c in range(3))
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# Post-adjust
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def _apply_bg_adjustments(bg: np.ndarray, cfg: Dict[str,Any]) -> np.ndarray:
bright = cfg.get("brightness",1.0)
contrast = cfg.get("contrast",1.0)
if bright==1.0 and contrast==1.0:
return bg
out = bg.astype(np.float32)*contrast*bright
return np.clip(out,0,255).astype(np.uint8)
|