File size: 19,536 Bytes
35e2c73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
"""
Configuration Management Module
==============================
Centralized configuration management for BackgroundFX Pro.
Handles settings, model paths, quality parameters, and environment variables.
Features:
- YAML and JSON configuration files
- Environment variable integration
- Model path management (works with checkpoints/ folder)
- Quality thresholds and processing parameters
- Development vs Production configurations
- Runtime configuration updates
Author: BackgroundFX Pro Team
License: MIT
"""
import os
import yaml
import json
from typing import Dict, Any, Optional, Union
from pathlib import Path
from dataclasses import dataclass, field
import logging
from copy import deepcopy
logger = logging.getLogger(__name__)
@dataclass
class ModelConfig:
"""Configuration for AI models"""
name: str
path: Optional[str] = None
device: str = "auto"
enabled: bool = True
fallback: bool = False
parameters: Dict[str, Any] = field(default_factory=dict)
@dataclass
class QualityConfig:
"""Quality assessment configuration"""
min_detection_confidence: float = 0.5
min_edge_quality: float = 0.3
min_mask_coverage: float = 0.05
max_asymmetry_score: float = 0.8
temporal_consistency_threshold: float = 0.05
matanyone_quality_threshold: float = 0.3
@dataclass
class ProcessingConfig:
"""Processing pipeline configuration"""
batch_size: int = 1
max_resolution: tuple = (1920, 1080)
temporal_smoothing: bool = True
edge_refinement: bool = True
fallback_enabled: bool = True
cache_enabled: bool = True
@dataclass
class VideoConfig:
"""Video processing configuration"""
output_format: str = "mp4"
output_quality: str = "high" # high, medium, low
preserve_audio: bool = True
fps_limit: Optional[int] = None
codec: str = "h264"
class ConfigManager:
"""Main configuration manager"""
def __init__(self, config_dir: str = ".", checkpoints_dir: str = "checkpoints"):
self.config_dir = Path(config_dir)
self.checkpoints_dir = Path(checkpoints_dir)
# Default configurations
self.models: Dict[str, ModelConfig] = {}
self.quality = QualityConfig()
self.processing = ProcessingConfig()
self.video = VideoConfig()
# Runtime settings
self.debug_mode = False
self.environment = "development"
# Initialize with defaults
self._initialize_default_configs()
def _initialize_default_configs(self):
"""Initialize with default model configurations"""
# SAM2 Configuration
self.models['sam2'] = ModelConfig(
name='sam2',
path=self._find_model_path('sam2', ['sam2_hiera_large.pt', 'sam2_hiera_base.pt']),
device='auto',
enabled=True,
fallback=False,
parameters={
'model_type': 'vit_l',
'checkpoint': None, # Will be set based on found path
'multimask_output': False,
'use_checkpoint': True
}
)
# MatAnyone Configuration
self.models['matanyone'] = ModelConfig(
name='matanyone',
path=None, # Uses HF API by default
device='auto',
enabled=True,
fallback=False,
parameters={
'use_hf_api': True,
'hf_model': 'PeiqingYang/MatAnyone',
'api_timeout': 60,
'quality_threshold': 0.3,
'fallback_enabled': True
}
)
# Traditional CV Fallback
self.models['traditional_cv'] = ModelConfig(
name='traditional_cv',
path=None,
device='cpu',
enabled=True,
fallback=True,
parameters={
'methods': ['canny', 'color_detection', 'texture_analysis'],
'edge_threshold': [50, 150],
'color_ranges': {
'dark_hair': [[0, 0, 0], [180, 255, 80]],
'brown_hair': [[8, 50, 20], [25, 255, 200]]
}
}
)
def _find_model_path(self, model_name: str, possible_files: list) -> Optional[str]:
"""Find model file in checkpoints directory"""
try:
# Check in checkpoints directory
for filename in possible_files:
full_path = self.checkpoints_dir / filename
if full_path.exists():
logger.info(f"β
Found {model_name} at: {full_path}")
return str(full_path)
# Also check in subdirectories
model_subdir = self.checkpoints_dir / model_name / filename
if model_subdir.exists():
logger.info(f"β
Found {model_name} at: {model_subdir}")
return str(model_subdir)
logger.warning(f"β οΈ {model_name} model not found in {self.checkpoints_dir}")
return None
except Exception as e:
logger.error(f"β Error finding {model_name}: {e}")
return None
def load_from_file(self, config_path: str) -> bool:
"""Load configuration from YAML or JSON file"""
try:
config_path = Path(config_path)
if not config_path.exists():
logger.warning(f"β οΈ Config file not found: {config_path}")
return False
# Determine file type and load
if config_path.suffix.lower() in ['.yaml', '.yml']:
with open(config_path, 'r') as f:
config_data = yaml.safe_load(f)
elif config_path.suffix.lower() == '.json':
with open(config_path, 'r') as f:
config_data = json.load(f)
else:
logger.error(f"β Unsupported config format: {config_path.suffix}")
return False
# Apply configuration
self._apply_config_data(config_data)
logger.info(f"β
Configuration loaded from: {config_path}")
return True
except Exception as e:
logger.error(f"β Failed to load config from {config_path}: {e}")
return False
def _apply_config_data(self, config_data: Dict[str, Any]):
"""Apply configuration data to current settings"""
try:
# Models configuration
if 'models' in config_data:
for model_name, model_config in config_data['models'].items():
if model_name in self.models:
# Update existing model config
for key, value in model_config.items():
if hasattr(self.models[model_name], key):
setattr(self.models[model_name], key, value)
elif key == 'parameters':
self.models[model_name].parameters.update(value)
# Quality configuration
if 'quality' in config_data:
for key, value in config_data['quality'].items():
if hasattr(self.quality, key):
setattr(self.quality, key, value)
# Processing configuration
if 'processing' in config_data:
for key, value in config_data['processing'].items():
if hasattr(self.processing, key):
setattr(self.processing, key, value)
# Video configuration
if 'video' in config_data:
for key, value in config_data['video'].items():
if hasattr(self.video, key):
setattr(self.video, key, value)
# Environment settings
if 'environment' in config_data:
self.environment = config_data['environment']
if 'debug_mode' in config_data:
self.debug_mode = config_data['debug_mode']
except Exception as e:
logger.error(f"β Error applying config data: {e}")
raise
def load_from_environment(self):
"""Load configuration from environment variables"""
try:
# Model paths from environment
sam2_path = os.getenv('SAM2_MODEL_PATH')
if sam2_path and Path(sam2_path).exists():
self.models['sam2'].path = sam2_path
# API tokens
hf_token = os.getenv('HUGGINGFACE_TOKEN')
if hf_token:
self.models['matanyone'].parameters['hf_token'] = hf_token
# Device configuration
device = os.getenv('TORCH_DEVICE', os.getenv('DEVICE'))
if device:
for model in self.models.values():
if model.device == 'auto':
model.device = device
# Processing settings
batch_size = os.getenv('BATCH_SIZE')
if batch_size:
self.processing.batch_size = int(batch_size)
# Quality thresholds
min_confidence = os.getenv('MIN_DETECTION_CONFIDENCE')
if min_confidence:
self.quality.min_detection_confidence = float(min_confidence)
# Environment mode
env_mode = os.getenv('ENVIRONMENT', os.getenv('ENV'))
if env_mode:
self.environment = env_mode
# Debug mode
debug = os.getenv('DEBUG', os.getenv('DEBUG_MODE'))
if debug:
self.debug_mode = debug.lower() in ['true', '1', 'yes']
logger.info("β
Environment variables loaded")
except Exception as e:
logger.error(f"β Error loading environment variables: {e}")
def save_to_file(self, config_path: str, format: str = 'yaml') -> bool:
"""Save current configuration to file"""
try:
config_path = Path(config_path)
config_path.parent.mkdir(parents=True, exist_ok=True)
# Prepare data for saving
config_data = self.to_dict()
# Save based on format
if format.lower() in ['yaml', 'yml']:
with open(config_path, 'w') as f:
yaml.dump(config_data, f, default_flow_style=False, indent=2)
elif format.lower() == 'json':
with open(config_path, 'w') as f:
json.dump(config_data, f, indent=2)
else:
logger.error(f"β Unsupported save format: {format}")
return False
logger.info(f"β
Configuration saved to: {config_path}")
return True
except Exception as e:
logger.error(f"β Failed to save config to {config_path}: {e}")
return False
def to_dict(self) -> Dict[str, Any]:
"""Convert configuration to dictionary"""
return {
'models': {
name: {
'name': config.name,
'path': config.path,
'device': config.device,
'enabled': config.enabled,
'fallback': config.fallback,
'parameters': config.parameters
} for name, config in self.models.items()
},
'quality': {
'min_detection_confidence': self.quality.min_detection_confidence,
'min_edge_quality': self.quality.min_edge_quality,
'min_mask_coverage': self.quality.min_mask_coverage,
'max_asymmetry_score': self.quality.max_asymmetry_score,
'temporal_consistency_threshold': self.quality.temporal_consistency_threshold,
'matanyone_quality_threshold': self.quality.matanyone_quality_threshold
},
'processing': {
'batch_size': self.processing.batch_size,
'max_resolution': self.processing.max_resolution,
'temporal_smoothing': self.processing.temporal_smoothing,
'edge_refinement': self.processing.edge_refinement,
'fallback_enabled': self.processing.fallback_enabled,
'cache_enabled': self.processing.cache_enabled
},
'video': {
'output_format': self.video.output_format,
'output_quality': self.video.output_quality,
'preserve_audio': self.video.preserve_audio,
'fps_limit': self.video.fps_limit,
'codec': self.video.codec
},
'environment': self.environment,
'debug_mode': self.debug_mode
}
def get_model_config(self, model_name: str) -> Optional[ModelConfig]:
"""Get configuration for specific model"""
return self.models.get(model_name)
def is_model_enabled(self, model_name: str) -> bool:
"""Check if model is enabled"""
model = self.models.get(model_name)
return model.enabled if model else False
def get_enabled_models(self) -> Dict[str, ModelConfig]:
"""Get all enabled models"""
return {name: config for name, config in self.models.items() if config.enabled}
def get_fallback_models(self) -> Dict[str, ModelConfig]:
"""Get all fallback models"""
return {name: config for name, config in self.models.items()
if config.enabled and config.fallback}
def update_model_path(self, model_name: str, path: str) -> bool:
"""Update model path"""
if model_name in self.models:
if Path(path).exists():
self.models[model_name].path = path
logger.info(f"β
Updated {model_name} path: {path}")
return True
else:
logger.error(f"β Model path does not exist: {path}")
return False
else:
logger.error(f"β Unknown model: {model_name}")
return False
def validate_configuration(self) -> Dict[str, Any]:
"""Validate current configuration and return status"""
validation_results = {
'valid': True,
'errors': [],
'warnings': [],
'model_status': {}
}
try:
# Validate models
for name, config in self.models.items():
model_status = {'enabled': config.enabled, 'path_exists': True, 'issues': []}
if config.enabled and config.path:
if not Path(config.path).exists():
model_status['path_exists'] = False
model_status['issues'].append(f"Model file not found: {config.path}")
validation_results['errors'].append(f"{name}: Model file not found")
validation_results['valid'] = False
validation_results['model_status'][name] = model_status
# Validate quality thresholds
if not 0 <= self.quality.min_detection_confidence <= 1:
validation_results['errors'].append("min_detection_confidence must be between 0 and 1")
validation_results['valid'] = False
# Validate processing settings
if self.processing.batch_size < 1:
validation_results['errors'].append("batch_size must be >= 1")
validation_results['valid'] = False
# Check for enabled models
enabled_models = self.get_enabled_models()
if not enabled_models:
validation_results['warnings'].append("No models are enabled")
# Check for fallback models
fallback_models = self.get_fallback_models()
if not fallback_models:
validation_results['warnings'].append("No fallback models configured")
logger.info(f"β
Configuration validation completed: {'Valid' if validation_results['valid'] else 'Invalid'}")
except Exception as e:
validation_results['valid'] = False
validation_results['errors'].append(f"Validation error: {str(e)}")
logger.error(f"β Configuration validation failed: {e}")
return validation_results
def create_runtime_config(self) -> Dict[str, Any]:
"""Create runtime configuration for processing pipeline"""
return {
'models': self.get_enabled_models(),
'quality_thresholds': {
'min_confidence': self.quality.min_detection_confidence,
'min_edge_quality': self.quality.min_edge_quality,
'temporal_threshold': self.quality.temporal_consistency_threshold,
'matanyone_threshold': self.quality.matanyone_quality_threshold
},
'processing_options': {
'batch_size': self.processing.batch_size,
'temporal_smoothing': self.processing.temporal_smoothing,
'edge_refinement': self.processing.edge_refinement,
'fallback_enabled': self.processing.fallback_enabled,
'cache_enabled': self.processing.cache_enabled
},
'video_settings': {
'format': self.video.output_format,
'quality': self.video.output_quality,
'preserve_audio': self.video.preserve_audio,
'codec': self.video.codec
},
'debug_mode': self.debug_mode
}
# Global configuration manager
_config_manager: Optional[ConfigManager] = None
def get_config(config_dir: str = ".", checkpoints_dir: str = "checkpoints") -> ConfigManager:
"""Get global configuration manager"""
global _config_manager
if _config_manager is None:
_config_manager = ConfigManager(config_dir, checkpoints_dir)
# Try to load from default locations
_config_manager.load_from_environment()
# Try to load from config files
config_files = ['config.yaml', 'config.yml', 'config.json']
for config_file in config_files:
if Path(config_file).exists():
_config_manager.load_from_file(config_file)
break
return _config_manager
def load_config(config_path: str) -> ConfigManager:
"""Load configuration from specific file"""
config = get_config()
config.load_from_file(config_path)
return config
def get_model_config(model_name: str) -> Optional[ModelConfig]:
"""Get model configuration"""
return get_config().get_model_config(model_name)
def is_model_enabled(model_name: str) -> bool:
"""Check if model is enabled"""
return get_config().is_model_enabled(model_name)
def get_quality_thresholds() -> QualityConfig:
"""Get quality configuration"""
return get_config().quality
def get_processing_config() -> ProcessingConfig:
"""Get processing configuration"""
return get_config().processing |