File size: 13,321 Bytes
ce6bb5b 59aded7 ce6bb5b 62d73e2 59aded7 62d73e2 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 f7961f3 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 62d73e2 76d53eb 62d73e2 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 62d73e2 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 ce6bb5b 59aded7 f7961f3 59aded7 f7961f3 59aded7 f7961f3 59aded7 f7961f3 59aded7 62d73e2 59aded7 62d73e2 59aded7 62d73e2 59aded7 76d53eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
"""
Device Manager for BackgroundFX Pro
Handles device detection, optimization, and hardware compatibility
"""
# CRITICAL: Set OMP_NUM_THREADS before ANY other imports to prevent libgomp error
import os
if 'OMP_NUM_THREADS' not in os.environ:
os.environ['OMP_NUM_THREADS'] = '4'
os.environ['MKL_NUM_THREADS'] = '4'
import sys
import platform
import subprocess
import logging
from typing import Dict, Any, Optional, Tuple
from dataclasses import dataclass
from enum import Enum
import torch
import psutil
import cpuinfo
logger = logging.getLogger(__name__)
class DeviceType(Enum):
"""Enumeration of supported device types"""
CUDA = "cuda"
MPS = "mps"
CPU = "cpu"
@dataclass
class DeviceInfo:
"""Information about a compute device"""
type: DeviceType
index: int
name: str
memory_total: int
memory_available: int
compute_capability: Optional[Tuple[int, int]] = None
class DeviceManager:
"""Manages compute devices and system optimization"""
_instance = None
def __init__(self):
"""Initialize device manager"""
self.devices = []
self.optimal_device = None
self.cpu_info = None
self.system_info = {}
# Initialize device detection
self._detect_devices()
self._gather_system_info()
self._determine_optimal_device()
def _detect_devices(self):
"""Detect available compute devices"""
self.devices = []
# Check for CUDA devices
if torch.cuda.is_available():
for i in range(torch.cuda.device_count()):
props = torch.cuda.get_device_properties(i)
self.devices.append(DeviceInfo(
type=DeviceType.CUDA,
index=i,
name=props.name,
memory_total=props.total_memory,
memory_available=props.total_memory - torch.cuda.memory_allocated(i),
compute_capability=(props.major, props.minor)
))
# Check for MPS (Apple Silicon)
if hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
# MPS doesn't provide detailed device info like CUDA
self.devices.append(DeviceInfo(
type=DeviceType.MPS,
index=0,
name="Apple Silicon GPU",
memory_total=psutil.virtual_memory().total,
memory_available=psutil.virtual_memory().available
))
# CPU is always available
try:
cpu_info = cpuinfo.get_cpu_info()
cpu_name = cpu_info.get('brand_raw', 'Unknown CPU')
except:
cpu_name = platform.processor() or "Unknown CPU"
self.devices.append(DeviceInfo(
type=DeviceType.CPU,
index=0,
name=cpu_name,
memory_total=psutil.virtual_memory().total,
memory_available=psutil.virtual_memory().available
))
def _gather_system_info(self):
"""Gather system information"""
try:
cpu_info = cpuinfo.get_cpu_info()
self.cpu_info = cpu_info
except:
self.cpu_info = {}
self.system_info = {
'platform': platform.system(),
'platform_release': platform.release(),
'platform_version': platform.version(),
'architecture': platform.machine(),
'processor': platform.processor(),
'cpu_count': psutil.cpu_count(logical=False),
'cpu_count_logical': psutil.cpu_count(logical=True),
'ram_total': psutil.virtual_memory().total,
'ram_available': psutil.virtual_memory().available,
'python_version': sys.version,
'torch_version': torch.__version__,
}
def _determine_optimal_device(self):
"""Determine the optimal device for computation"""
# Priority: CUDA > MPS > CPU
cuda_devices = [d for d in self.devices if d.type == DeviceType.CUDA]
mps_devices = [d for d in self.devices if d.type == DeviceType.MPS]
cpu_devices = [d for d in self.devices if d.type == DeviceType.CPU]
if cuda_devices:
# Choose CUDA device with most available memory
self.optimal_device = max(cuda_devices, key=lambda d: d.memory_available)
elif mps_devices:
self.optimal_device = mps_devices[0]
else:
self.optimal_device = cpu_devices[0]
logger.info(f"Optimal device: {self.optimal_device.name} ({self.optimal_device.type.value})")
def get_optimal_device(self) -> str:
"""Get the optimal device string for PyTorch"""
if self.optimal_device.type == DeviceType.CUDA:
return f"cuda:{self.optimal_device.index}"
elif self.optimal_device.type == DeviceType.MPS:
return "mps"
else:
return "cpu"
def fix_cuda_compatibility(self):
"""Apply CUDA compatibility fixes"""
if not torch.cuda.is_available():
logger.info("CUDA not available, skipping compatibility fixes")
return
try:
# Set CUDA environment variables for better compatibility
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
# For older GPUs, enable TF32 for better performance
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# Set memory fraction for stability
if 'PYTORCH_CUDA_ALLOC_CONF' not in os.environ:
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
logger.info("CUDA compatibility settings applied")
except Exception as e:
logger.warning(f"Error applying CUDA compatibility fixes: {e}")
def setup_optimal_threading(self):
"""Configure optimal threading for the system"""
try:
# Skip if already configured (to avoid overwriting the early setting)
current_omp = os.environ.get('OMP_NUM_THREADS')
if current_omp and current_omp.isdigit() and int(current_omp) > 0:
logger.info(f"Threading already configured: OMP_NUM_THREADS={current_omp}")
# Just ensure PyTorch uses the same settings
torch.set_num_threads(int(current_omp))
# Ensure MKL matches OMP if it's not set
if 'MKL_NUM_THREADS' not in os.environ:
os.environ['MKL_NUM_THREADS'] = current_omp
return
# Get physical CPU count
physical_cores = psutil.cpu_count(logical=False)
if physical_cores is None:
physical_cores = 4 # Default fallback
# Validate and set the number of threads
num_threads = str(min(physical_cores, 8)) # Cap at 8 threads
# Set OpenMP threads (validate the value is a positive integer)
if num_threads.isdigit() and int(num_threads) > 0:
os.environ['OMP_NUM_THREADS'] = num_threads
else:
os.environ['OMP_NUM_THREADS'] = '4' # Safe default
# Set MKL threads for Intel processors
if 'intel' in self.system_info.get('processor', '').lower():
os.environ['MKL_NUM_THREADS'] = os.environ['OMP_NUM_THREADS']
# Set PyTorch threads
torch.set_num_threads(int(os.environ['OMP_NUM_THREADS']))
# For CUDA, set the number of threads for CPU operations
if torch.cuda.is_available():
torch.set_num_interop_threads(2) # Inter-op parallelism
logger.info(f"Threading configured: OMP_NUM_THREADS={os.environ.get('OMP_NUM_THREADS')}")
except Exception as e:
logger.warning(f"Error setting up threading: {e}")
# Set safe defaults
if 'OMP_NUM_THREADS' not in os.environ:
os.environ['OMP_NUM_THREADS'] = '4'
if 'MKL_NUM_THREADS' not in os.environ:
os.environ['MKL_NUM_THREADS'] = '4'
def get_system_diagnostics(self) -> Dict[str, Any]:
"""Get comprehensive system diagnostics"""
diagnostics = {
'system': self.system_info.copy(),
'devices': [],
'optimal_device': None,
'threading': {
'omp_num_threads': os.environ.get('OMP_NUM_THREADS', 'not set'),
'mkl_num_threads': os.environ.get('MKL_NUM_THREADS', 'not set'),
'torch_num_threads': torch.get_num_threads(),
}
}
# Add device information
for device in self.devices:
device_info = {
'type': device.type.value,
'index': device.index,
'name': device.name,
'memory_total_gb': device.memory_total / (1024**3),
'memory_available_gb': device.memory_available / (1024**3),
}
if device.compute_capability:
device_info['compute_capability'] = f"{device.compute_capability[0]}.{device.compute_capability[1]}"
diagnostics['devices'].append(device_info)
# Add optimal device
if self.optimal_device:
diagnostics['optimal_device'] = {
'type': self.optimal_device.type.value,
'name': self.optimal_device.name,
'pytorch_device': self.get_optimal_device()
}
# Add CUDA-specific diagnostics
if torch.cuda.is_available():
diagnostics['cuda'] = {
'available': True,
'version': torch.version.cuda,
'device_count': torch.cuda.device_count(),
'current_device': torch.cuda.current_device() if torch.cuda.is_initialized() else None,
}
else:
diagnostics['cuda'] = {'available': False}
# Add MPS-specific diagnostics
if hasattr(torch.backends, 'mps'):
diagnostics['mps'] = {
'available': torch.backends.mps.is_available(),
'built': torch.backends.mps.is_built()
}
else:
diagnostics['mps'] = {'available': False}
return diagnostics
def get_device_for_model(self, model_size_gb: float = 2.0) -> str:
"""Get appropriate device based on model size requirements"""
required_memory = model_size_gb * 1024**3 * 1.5 # 1.5x for overhead
# Check CUDA devices first
cuda_devices = [d for d in self.devices if d.type == DeviceType.CUDA]
for device in cuda_devices:
if device.memory_available > required_memory:
return f"cuda:{device.index}"
# Check MPS
mps_devices = [d for d in self.devices if d.type == DeviceType.MPS]
if mps_devices and mps_devices[0].memory_available > required_memory:
return "mps"
# Fallback to CPU
return "cpu"
# Singleton instance holder
_device_manager_instance = None
def get_device_manager() -> DeviceManager:
"""Get or create the singleton DeviceManager instance"""
global _device_manager_instance
if _device_manager_instance is None:
_device_manager_instance = DeviceManager()
return _device_manager_instance
def get_optimal_device() -> str:
"""
Get the optimal device string for PyTorch operations.
Returns:
str: Device string like 'cuda:0', 'mps', or 'cpu'
"""
manager = get_device_manager()
return manager.get_optimal_device()
def fix_cuda_compatibility():
"""
Apply CUDA compatibility settings for stable operation.
Sets environment variables and PyTorch settings for CUDA compatibility.
"""
manager = get_device_manager()
manager.fix_cuda_compatibility()
def setup_optimal_threading():
"""
Configure optimal threading settings for the current system.
Sets OMP_NUM_THREADS, MKL_NUM_THREADS, and PyTorch thread counts.
"""
manager = get_device_manager()
manager.setup_optimal_threading()
def get_system_diagnostics() -> Dict[str, Any]:
"""
Get comprehensive system diagnostics information.
Returns:
Dict containing system info, device info, and configuration details
"""
manager = get_device_manager()
return manager.get_system_diagnostics()
# Initialize and configure on module import
if __name__ != "__main__":
# When imported, automatically set up the device manager
try:
# Get the manager instance (threading is already configured at top of file)
manager = get_device_manager()
# Only run setup_optimal_threading if needed (it will check internally)
manager.setup_optimal_threading()
except Exception as e:
logger.warning(f"Error during device manager initialization: {e}") |