File size: 17,147 Bytes
a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 36900c1 a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 84a78ca a70dcf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
#!/usr/bin/env python3
"""
Memory Manager for BackgroundFX Pro
- Safe on CPU/CUDA/MPS (mostly CUDA/T4 on Spaces)
- Accepts `device` as str or torch.device
- Optional per-process VRAM cap (env or method)
- Detailed usage reporting (CPU/RAM + VRAM + torch allocator)
- Light and aggressive cleanup paths
- Background monitor (optional)
Env switches:
BFX_DISABLE_LIMIT=1 -> do not set VRAM fraction automatically
BFX_CUDA_FRACTION=0.80 -> fraction to cap per-process VRAM (0.10..0.95)
"""
from __future__ import annotations
import gc
import os
import time
import logging
import threading
from typing import Dict, Any, Optional, Callable
# Optional deps
try:
import psutil
except Exception: # pragma: no cover
psutil = None
try:
import torch
except Exception: # pragma: no cover
torch = None
logger = logging.getLogger(__name__)
# ---- local exception to avoid shadowing built-in MemoryError ----
class MemoryManagerError(Exception):
pass
def _bytes_to_gb(x: int | float) -> float:
try:
return float(x) / (1024**3)
except Exception:
return 0.0
def _normalize_device(dev) -> "torch.device":
if torch is None:
# fake CPU device
class _Fake:
type = "cpu"
index = None
return _Fake() # type: ignore[return-value]
if isinstance(dev, str):
return torch.device(dev)
if hasattr(dev, "type"):
return dev
# default CPU
return torch.device("cpu")
def _cuda_index(device) -> Optional[int]:
if getattr(device, "type", "cpu") != "cuda":
return None
idx = getattr(device, "index", None)
if idx is None:
# normalize bare "cuda" to 0
return 0
return int(idx)
class MemoryManager:
"""
Comprehensive memory management with VRAM cap + cleanup utilities.
"""
def __init__(self, device, memory_limit_gb: Optional[float] = None):
self.device = _normalize_device(device)
self.device_type = getattr(self.device, "type", "cpu")
self.cuda_idx = _cuda_index(self.device)
self.gpu_available = bool(
torch and self.device_type == "cuda" and torch.cuda.is_available()
)
self.mps_available = bool(
torch and self.device_type == "mps" and getattr(torch.backends, "mps", None)
and torch.backends.mps.is_available()
)
self.memory_limit_gb = memory_limit_gb
self.cleanup_callbacks: list[Callable] = []
self.monitoring_active = False
self.monitoring_thread: Optional[threading.Thread] = None
self.stats = {
"cleanup_count": 0,
"peak_memory_usage": 0.0,
"total_allocated": 0.0,
"total_freed": 0.0,
}
self.applied_fraction: Optional[float] = None
self._initialize_memory_limits()
self._maybe_apply_vram_fraction()
logger.info(f"MemoryManager initialized (device={self.device}, cuda={self.gpu_available})")
# -------------------------------
# init helpers
# -------------------------------
def _initialize_memory_limits(self):
try:
if self.gpu_available:
props = torch.cuda.get_device_properties(self.cuda_idx or 0)
total_gb = _bytes_to_gb(props.total_memory)
if self.memory_limit_gb is None:
self.memory_limit_gb = max(0.5, total_gb * 0.80) # default 80%
logger.info(
f"CUDA memory limit baseline ~{self.memory_limit_gb:.1f}GB "
f"(device total {total_gb:.1f}GB)"
)
elif self.mps_available:
vm = psutil.virtual_memory() if psutil else None
total_gb = _bytes_to_gb(vm.total) if vm else 0.0
if self.memory_limit_gb is None:
self.memory_limit_gb = max(0.5, total_gb * 0.50)
logger.info(f"MPS memory baseline ~{self.memory_limit_gb:.1f}GB (system {total_gb:.1f}GB)")
else:
vm = psutil.virtual_memory() if psutil else None
total_gb = _bytes_to_gb(vm.total) if vm else 0.0
if self.memory_limit_gb is None:
self.memory_limit_gb = max(0.5, total_gb * 0.60)
logger.info(f"CPU memory baseline ~{self.memory_limit_gb:.1f}GB (system {total_gb:.1f}GB)")
except Exception as e:
logger.warning(f"Memory limit init failed: {e}")
if self.memory_limit_gb is None:
self.memory_limit_gb = 4.0 # conservative fallback
def _maybe_apply_vram_fraction(self):
if not self.gpu_available or torch is None:
return
if os.environ.get("BFX_DISABLE_LIMIT", ""):
return
frac_env = os.environ.get("BFX_CUDA_FRACTION", "").strip()
try:
fraction = float(frac_env) if frac_env else 0.80
except Exception:
fraction = 0.80
applied = self.limit_cuda_memory(fraction=fraction)
if applied:
logger.info(f"Per-process CUDA memory fraction set to {applied:.2f} on device {self.cuda_idx or 0}")
# -------------------------------
# public API
# -------------------------------
def get_memory_usage(self) -> Dict[str, Any]:
usage: Dict[str, Any] = {
"device_type": self.device_type,
"memory_limit_gb": self.memory_limit_gb,
"timestamp": time.time(),
}
# CPU / system
if psutil:
try:
vm = psutil.virtual_memory()
usage.update(
dict(
system_total_gb=round(_bytes_to_gb(vm.total), 3),
system_available_gb=round(_bytes_to_gb(vm.available), 3),
system_used_gb=round(_bytes_to_gb(vm.used), 3),
system_percent=float(vm.percent),
)
)
swap = psutil.swap_memory()
usage.update(
dict(
swap_total_gb=round(_bytes_to_gb(swap.total), 3),
swap_used_gb=round(_bytes_to_gb(swap.used), 3),
swap_percent=float(swap.percent),
)
)
proc = psutil.Process()
mi = proc.memory_info()
usage.update(
dict(
process_rss_gb=round(_bytes_to_gb(mi.rss), 3),
process_vms_gb=round(_bytes_to_gb(mi.vms), 3),
)
)
except Exception as e:
logger.debug(f"psutil stats error: {e}")
# GPU
if self.gpu_available and torch is not None:
try:
# mem_get_info returns (free, total) in bytes
free_b, total_b = torch.cuda.mem_get_info(self.cuda_idx or 0)
used_b = total_b - free_b
usage.update(
dict(
vram_total_gb=round(_bytes_to_gb(total_b), 3),
vram_used_gb=round(_bytes_to_gb(used_b), 3),
vram_free_gb=round(_bytes_to_gb(free_b), 3),
vram_used_percent=float(used_b / total_b * 100.0) if total_b else 0.0,
)
)
except Exception as e:
logger.debug(f"mem_get_info failed: {e}")
# torch allocator stats
try:
idx = self.cuda_idx or 0
allocated = torch.cuda.memory_allocated(idx)
reserved = torch.cuda.memory_reserved(idx)
usage["torch_allocated_gb"] = round(_bytes_to_gb(allocated), 3)
usage["torch_reserved_gb"] = round(_bytes_to_gb(reserved), 3)
# inactive split (2.x)
try:
inactive = torch.cuda.memory_stats(idx).get("inactive_split_bytes.all.current", 0)
usage["torch_inactive_split_gb"] = round(_bytes_to_gb(inactive), 3)
except Exception:
pass
except Exception as e:
logger.debug(f"allocator stats failed: {e}")
usage["applied_fraction"] = self.applied_fraction
# Update peak tracker
current = usage.get("vram_used_gb", usage.get("system_used_gb", 0.0))
try:
if float(current) > float(self.stats["peak_memory_usage"]):
self.stats["peak_memory_usage"] = float(current)
except Exception:
pass
return usage
def limit_cuda_memory(self, fraction: Optional[float] = None, max_gb: Optional[float] = None) -> Optional[float]:
if not self.gpu_available or torch is None:
return None
# derive fraction from max_gb if provided
if max_gb is not None:
try:
_, total_b = torch.cuda.mem_get_info(self.cuda_idx or 0)
total_gb = _bytes_to_gb(total_b)
if total_gb <= 0:
return None
fraction = min(max(0.10, max_gb / total_gb), 0.95)
except Exception as e:
logger.debug(f"fraction from max_gb failed: {e}")
return None
if fraction is None:
fraction = 0.80
fraction = float(max(0.10, min(0.95, fraction)))
try:
torch.cuda.set_per_process_memory_fraction(fraction, device=self.cuda_idx or 0)
self.applied_fraction = fraction
return fraction
except Exception as e:
logger.debug(f"set_per_process_memory_fraction failed: {e}")
return None
def cleanup(self) -> None:
"""Light cleanup used frequently between steps."""
try:
gc.collect()
except Exception:
pass
if self.gpu_available and torch is not None:
try:
torch.cuda.empty_cache()
except Exception:
pass
self.stats["cleanup_count"] += 1
def cleanup_basic(self) -> None:
"""Alias kept for compatibility."""
self.cleanup()
def cleanup_aggressive(self) -> None:
"""Aggressive cleanup for OOM recovery or big scene switches."""
if self.gpu_available and torch is not None:
try:
torch.cuda.synchronize(self.cuda_idx or 0)
except Exception:
pass
try:
torch.cuda.empty_cache()
except Exception:
pass
try:
torch.cuda.reset_peak_memory_stats(self.cuda_idx or 0)
except Exception:
pass
try:
if hasattr(torch.cuda, "ipc_collect"):
torch.cuda.ipc_collect()
except Exception:
pass
try:
gc.collect(); gc.collect()
except Exception:
pass
self.stats["cleanup_count"] += 1
def register_cleanup_callback(self, callback: Callable):
self.cleanup_callbacks.append(callback)
def start_monitoring(self, interval_seconds: float = 30.0, pressure_callback: Optional[Callable] = None):
if self.monitoring_active:
logger.warning("Memory monitoring already active")
return
self.monitoring_active = True
def loop():
while self.monitoring_active:
try:
pressure = self.check_memory_pressure()
if pressure["under_pressure"]:
logger.warning(
f"Memory pressure: {pressure['pressure_level']} "
f"({pressure['usage_percent']:.1f}%)"
)
if pressure_callback:
try:
pressure_callback(pressure)
except Exception as e:
logger.error(f"Pressure callback failed: {e}")
if pressure["pressure_level"] == "critical":
self.cleanup_aggressive()
except Exception as e:
logger.error(f"Memory monitoring error: {e}")
time.sleep(interval_seconds)
self.monitoring_thread = threading.Thread(target=loop, daemon=True)
self.monitoring_thread.start()
logger.info(f"Memory monitoring started (interval: {interval_seconds}s)")
def stop_monitoring(self):
if self.monitoring_active:
self.monitoring_active = False
if self.monitoring_thread and self.monitoring_thread.is_alive():
self.monitoring_thread.join(timeout=5.0)
logger.info("Memory monitoring stopped")
def check_memory_pressure(self, threshold_percent: float = 85.0) -> Dict[str, Any]:
usage = self.get_memory_usage()
info = {
"under_pressure": False,
"pressure_level": "normal",
"usage_percent": 0.0,
"recommendations": [],
}
if self.gpu_available:
percent = usage.get("vram_used_percent", 0.0)
info["usage_percent"] = percent
if percent >= threshold_percent:
info["under_pressure"] = True
if percent >= 95:
info["pressure_level"] = "critical"
info["recommendations"] += [
"Run aggressive memory cleanup",
"Reduce frame cache / chunk size",
"Lower resolution or disable previews",
]
else:
info["pressure_level"] = "warning"
info["recommendations"] += [
"Run cleanup",
"Monitor memory usage",
"Reduce keyframe interval",
]
else:
percent = usage.get("system_percent", 0.0)
info["usage_percent"] = percent
if percent >= threshold_percent:
info["under_pressure"] = True
if percent >= 95:
info["pressure_level"] = "critical"
info["recommendations"] += [
"Close other processes",
"Reduce resolution",
"Split video into chunks",
]
else:
info["pressure_level"] = "warning"
info["recommendations"] += [
"Run cleanup",
"Monitor usage",
"Reduce processing footprint",
]
return info
def estimate_memory_requirement(self, video_width: int, video_height: int, frames_in_memory: int = 5) -> Dict[str, float]:
bytes_per_frame = video_width * video_height * 3
overhead_multiplier = 3.0 # masks/intermediates
frames_gb = _bytes_to_gb(bytes_per_frame * frames_in_memory * overhead_multiplier)
estimate = {
"frames_memory_gb": round(frames_gb, 3),
"model_memory_gb": 4.0,
"system_overhead_gb": 2.0,
}
estimate["total_estimated_gb"] = round(
estimate["frames_memory_gb"] + estimate["model_memory_gb"] + estimate["system_overhead_gb"], 3
)
return estimate
def can_process_video(self, video_width: int, video_height: int, frames_in_memory: int = 5) -> Dict[str, Any]:
estimate = self.estimate_memory_requirement(video_width, video_height, frames_in_memory)
usage = self.get_memory_usage()
if self.gpu_available:
available = usage.get("vram_free_gb", 0.0)
else:
available = usage.get("system_available_gb", 0.0)
can = estimate["total_estimated_gb"] <= available
return {
"can_process": can,
"estimated_memory_gb": estimate["total_estimated_gb"],
"available_memory_gb": available,
"memory_margin_gb": round(available - estimate["total_estimated_gb"], 3),
"recommendations": [] if can else [
"Reduce resolution or duration",
"Process in smaller chunks",
"Run aggressive cleanup before start",
],
}
def get_stats(self) -> Dict[str, Any]:
return {
"cleanup_count": self.stats["cleanup_count"],
"peak_memory_usage_gb": self.stats["peak_memory_usage"],
"device_type": self.device_type,
"memory_limit_gb": self.memory_limit_gb,
"applied_fraction": self.applied_fraction,
"monitoring_active": self.monitoring_active,
"callbacks_registered": len(self.cleanup_callbacks),
}
def __del__(self):
try:
self.stop_monitoring()
self.cleanup_aggressive()
except Exception:
pass
|