MogensR's picture
Update app.py
61d0a06
raw
history blame
14.5 kB
#!/usr/bin/env python3
"""
Video Background Replacement - Main Application Entry Point
Refactored modular architecture - orchestrates specialized components
This file has been refactored from a monolithic 600+ line structure into
a clean orchestration layer that coordinates specialized modules:
- config: Application configuration and environment variables
- device_manager: Hardware detection and optimization
- memory_manager: Memory and GPU resource management
- model_loader: AI model loading and validation
- video_processor: Core video processing pipeline
- audio_processor: Audio track handling and FFmpeg operations
- progress_tracker: Progress monitoring and ETA calculations
- exceptions: Custom exception classes for better error handling
"""
import os
import logging
import threading
from pathlib import Path
from typing import Optional, Tuple, Dict, Any, Callable
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Apply Gradio schema patch early (before other imports)
try:
import gradio_client.utils as gc_utils
original_get_type = gc_utils.get_type
def patched_get_type(schema):
if not isinstance(schema, dict):
if isinstance(schema, bool):
return "boolean"
if isinstance(schema, str):
return "string"
if isinstance(schema, (int, float)):
return "number"
return "string"
return original_get_type(schema)
gc_utils.get_type = patched_get_type
logger.info("Gradio schema patch applied successfully")
except Exception as e:
logger.error(f"Gradio patch failed: {e}")
# Import modular components
from app_config import ProcessingConfig
from device_manager import DeviceManager
from memory_manager import MemoryManager
from model_loader import ModelLoader
from video_processor import CoreVideoProcessor
from audio_processor import AudioProcessor
from progress_tracker import ProgressTracker
from exceptions import VideoProcessingError, ModelLoadingError, DeviceError
# Import utilities (existing)
from utilities import (
segment_person_hq,
refine_mask_hq,
replace_background_hq,
create_professional_background,
PROFESSIONAL_BACKGROUNDS,
validate_video_file
)
# Import two-stage processor if available
try:
from two_stage_processor import TwoStageProcessor, CHROMA_PRESETS
TWO_STAGE_AVAILABLE = True
except ImportError:
TWO_STAGE_AVAILABLE = False
CHROMA_PRESETS = {'standard': {}}
class VideoProcessor:
"""
Main video processing orchestrator - coordinates all specialized components
"""
def __init__(self):
"""Initialize the video processor with all required components"""
self.config = ProcessingConfig()
self.device_manager = DeviceManager()
self.memory_manager = MemoryManager(self.device_manager.get_optimal_device())
self.model_loader = ModelLoader(self.device_manager.get_optimal_device())
self.audio_processor = AudioProcessor()
# Initialize core processor (will be set up after models load)
self.core_processor = None
self.two_stage_processor = None
# State management
self.models_loaded = False
self.loading_lock = threading.Lock()
self.cancel_event = threading.Event()
logger.info(f"VideoProcessor initialized on device: {self.device_manager.get_optimal_device()}")
def load_models(self, progress_callback: Optional[Callable] = None) -> str:
"""Load and validate all AI models"""
with self.loading_lock:
if self.models_loaded:
return "Models already loaded and validated"
try:
self.cancel_event.clear()
if progress_callback:
progress_callback(0.0, f"Starting model loading on {self.device_manager.get_optimal_device()}")
# Load models using the specialized loader
sam2_predictor, matanyone_model = self.model_loader.load_all_models(
progress_callback=progress_callback,
cancel_event=self.cancel_event
)
if self.cancel_event.is_set():
return "Model loading cancelled"
# Initialize core processor with loaded models
self.core_processor = CoreVideoProcessor(
sam2_predictor=sam2_predictor,
matanyone_model=matanyone_model,
config=self.config,
memory_manager=self.memory_manager
)
# Initialize two-stage processor if available
if TWO_STAGE_AVAILABLE and sam2_predictor and matanyone_model:
try:
self.two_stage_processor = TwoStageProcessor(sam2_predictor, matanyone_model)
logger.info("Two-stage processor initialized")
except Exception as e:
logger.warning(f"Two-stage processor init failed: {e}")
self.models_loaded = True
message = self.model_loader.get_load_summary()
logger.info(message)
return message
except ModelLoadingError as e:
self.models_loaded = False
error_msg = f"Model loading failed: {str(e)}"
logger.error(error_msg)
return error_msg
except Exception as e:
self.models_loaded = False
error_msg = f"Unexpected error during model loading: {str(e)}"
logger.error(error_msg)
return error_msg
def process_video(
self,
video_path: str,
background_choice: str,
custom_background_path: Optional[str] = None,
progress_callback: Optional[Callable] = None,
use_two_stage: bool = False,
chroma_preset: str = "standard",
preview_mask: bool = False,
preview_greenscreen: bool = False
) -> Tuple[Optional[str], str]:
"""Process video with the specified parameters"""
if not self.models_loaded or not self.core_processor:
return None, "Models not loaded. Please load models first."
if self.cancel_event.is_set():
return None, "Processing cancelled"
# Validate input file
is_valid, validation_msg = validate_video_file(video_path)
if not is_valid:
return None, f"Invalid video: {validation_msg}"
try:
# Route to appropriate processing method
if use_two_stage and TWO_STAGE_AVAILABLE and self.two_stage_processor:
return self._process_two_stage(
video_path, background_choice, custom_background_path,
progress_callback, chroma_preset
)
else:
return self._process_single_stage(
video_path, background_choice, custom_background_path,
progress_callback, preview_mask, preview_greenscreen
)
except VideoProcessingError as e:
logger.error(f"Video processing failed: {e}")
return None, f"Processing failed: {str(e)}"
except Exception as e:
logger.error(f"Unexpected error during video processing: {e}")
return None, f"Unexpected error: {str(e)}"
def _process_single_stage(
self,
video_path: str,
background_choice: str,
custom_background_path: Optional[str],
progress_callback: Optional[Callable],
preview_mask: bool,
preview_greenscreen: bool
) -> Tuple[Optional[str], str]:
"""Process video using single-stage pipeline"""
# Process video using core processor
processed_video_path, process_message = self.core_processor.process_video(
video_path=video_path,
background_choice=background_choice,
custom_background_path=custom_background_path,
progress_callback=progress_callback,
cancel_event=self.cancel_event,
preview_mask=preview_mask,
preview_greenscreen=preview_greenscreen
)
if processed_video_path is None:
return None, process_message
# Add audio if not in preview mode
if not (preview_mask or preview_greenscreen):
final_video_path = self.audio_processor.add_audio_to_video(
original_video=video_path,
processed_video=processed_video_path
)
else:
final_video_path = processed_video_path
success_msg = (
f"{process_message}\n"
f"Background: {background_choice}\n"
f"Mode: Single-stage\n"
f"Device: {self.device_manager.get_optimal_device()}"
)
return final_video_path, success_msg
def _process_two_stage(
self,
video_path: str,
background_choice: str,
custom_background_path: Optional[str],
progress_callback: Optional[Callable],
chroma_preset: str
) -> Tuple[Optional[str], str]:
"""Process video using two-stage pipeline"""
# Get video dimensions for background preparation
import cv2
cap = cv2.VideoCapture(video_path)
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
cap.release()
# Prepare background using core processor
background = self.core_processor.prepare_background(
background_choice, custom_background_path, frame_width, frame_height
)
if background is None:
return None, "Failed to prepare background"
# Process with two-stage pipeline
import time
timestamp = int(time.time())
final_output = f"/tmp/twostage_final_{timestamp}.mp4"
chroma_settings = CHROMA_PRESETS.get(chroma_preset, CHROMA_PRESETS['standard'])
result, message = self.two_stage_processor.process_full_pipeline(
video_path,
background,
final_output,
chroma_settings=chroma_settings,
progress_callback=progress_callback
)
if result is None:
return None, message
success_msg = (
f"Two-stage success!\n"
f"Background: {background_choice}\n"
f"Preset: {chroma_preset}\n"
f"Quality: Cinema-grade\n"
f"Device: {self.device_manager.get_optimal_device()}"
)
return result, success_msg
def get_status(self) -> Dict[str, Any]:
"""Get comprehensive status of all components"""
base_status = {
'models_loaded': self.models_loaded,
'two_stage_available': TWO_STAGE_AVAILABLE and self.two_stage_processor is not None,
'device': str(self.device_manager.get_optimal_device()),
'memory_usage': self.memory_manager.get_memory_usage(),
'config': self.config.to_dict()
}
# Add model-specific status if available
if self.model_loader:
base_status.update(self.model_loader.get_status())
# Add processing status if available
if self.core_processor:
base_status.update(self.core_processor.get_status())
return base_status
def cancel_processing(self):
"""Cancel any ongoing processing"""
self.cancel_event.set()
logger.info("Processing cancellation requested")
def cleanup_resources(self):
"""Clean up all resources"""
self.memory_manager.cleanup_aggressive()
if self.model_loader:
self.model_loader.cleanup()
logger.info("Resources cleaned up")
# Global processor instance for application
processor = VideoProcessor()
# Backward compatibility functions for existing UI
def load_models_with_validation(progress_callback: Optional[Callable] = None) -> str:
"""Load models with validation - backward compatibility wrapper"""
return processor.load_models(progress_callback)
def process_video_fixed(
video_path: str,
background_choice: str,
custom_background_path: Optional[str],
progress_callback: Optional[Callable] = None,
use_two_stage: bool = False,
chroma_preset: str = "standard",
preview_mask: bool = False,
preview_greenscreen: bool = False
) -> Tuple[Optional[str], str]:
"""Process video - backward compatibility wrapper"""
return processor.process_video(
video_path, background_choice, custom_background_path,
progress_callback, use_two_stage, chroma_preset,
preview_mask, preview_greenscreen
)
def get_model_status() -> Dict[str, Any]:
"""Get model status - backward compatibility wrapper"""
return processor.get_status()
def get_cache_status() -> Dict[str, Any]:
"""Get cache status - backward compatibility wrapper"""
return processor.get_status()
# For backward compatibility
PROCESS_CANCELLED = processor.cancel_event
def main():
"""Main application entry point"""
try:
logger.info("Starting Video Background Replacement application")
logger.info(f"Device: {processor.device_manager.get_optimal_device()}")
logger.info(f"Two-stage available: {TWO_STAGE_AVAILABLE}")
logger.info("Modular architecture loaded successfully")
# Import and create UI
from ui_components import create_interface
demo = create_interface()
# Launch application
demo.queue().launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True,
debug=False
)
except Exception as e:
logger.error(f"Application startup failed: {e}")
raise
finally:
# Cleanup on exit
processor.cleanup_resources()
if __name__ == "__main__":
main()