VideoBackgroundReplacer / video_processor.py
MogensR's picture
Update video_processor.py
b157fef
raw
history blame
26.8 kB
"""
Core Video Processing Module
Handles the main video processing pipeline, frame processing, and background replacement
"""
import os
import cv2
import numpy as np
import time
import logging
import threading
from typing import Optional, Tuple, Dict, Any, Callable
from pathlib import Path
# Import modular components
import app_config
import memory_manager
import progress_tracker
import exceptions
# Import utilities
from utilities import (
segment_person_hq,
refine_mask_hq,
replace_background_hq,
create_professional_background,
PROFESSIONAL_BACKGROUNDS,
validate_video_file
)
logger = logging.getLogger(__name__)
class CoreVideoProcessor:
"""
Core video processing pipeline for background replacement
"""
def __init__(self, sam2_predictor: Any, matanyone_model: Any,
config: app_config.ProcessingConfig, memory_mgr: memory_manager.MemoryManager):
self.sam2_predictor = sam2_predictor
self.matanyone_model = matanyone_model
self.config = config
self.memory_manager = memory_mgr
# Processing state
self.processing_active = False
self.last_refined_mask = None
self.frame_cache = {}
# Statistics
self.stats = {
'videos_processed': 0,
'total_frames_processed': 0,
'total_processing_time': 0.0,
'average_fps': 0.0,
'failed_frames': 0,
'successful_frames': 0,
'cache_hits': 0,
'segmentation_errors': 0,
'refinement_errors': 0
}
# Quality settings based on config
self.quality_settings = config.get_quality_settings()
logger.info("CoreVideoProcessor initialized")
logger.info(f"Quality preset: {config.quality_preset}")
logger.info(f"Quality settings: {self.quality_settings}")
def process_video(
self,
video_path: str,
background_choice: str,
custom_background_path: Optional[str] = None,
progress_callback: Optional[Callable] = None,
cancel_event: Optional[threading.Event] = None,
preview_mask: bool = False,
preview_greenscreen: bool = False
) -> Tuple[Optional[str], str]:
"""
Process video with background replacement
Args:
video_path: Input video path
background_choice: Background type or name
custom_background_path: Path to custom background (if applicable)
progress_callback: Progress update callback
cancel_event: Event to cancel processing
preview_mask: Generate mask preview instead of final output
preview_greenscreen: Generate greenscreen preview
Returns:
Tuple of (output_path, status_message)
"""
if self.processing_active:
return None, "Processing already in progress"
self.processing_active = True
start_time = time.time()
try:
# Validate input video
is_valid, validation_msg = validate_video_file(video_path)
if not is_valid:
return None, f"Invalid video file: {validation_msg}"
# Open video file
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return None, "Could not open video file"
# Get video properties
video_info = self._get_video_info(cap)
logger.info(f"Processing video: {video_info}")
# Check memory requirements
memory_check = self.memory_manager.can_process_video(
video_info['width'], video_info['height']
)
if not memory_check['can_process']:
cap.release()
return None, f"Insufficient memory: {memory_check['recommendations']}"
# Prepare background
background = self.prepare_background(
background_choice, custom_background_path,
video_info['width'], video_info['height']
)
if background is None:
cap.release()
return None, "Failed to prepare background"
# Setup output video
output_path = self._setup_output_video(video_info, preview_mask, preview_greenscreen)
out = self._create_video_writer(output_path, video_info)
if out is None:
cap.release()
return None, "Could not create output video writer"
# Process video frames
result = self._process_video_frames(
cap, out, background, video_info,
progress_callback, cancel_event,
preview_mask, preview_greenscreen
)
# Cleanup
cap.release()
out.release()
if result['success']:
# Update statistics
processing_time = time.time() - start_time
self._update_processing_stats(video_info, processing_time, result)
success_msg = (
f"Processing completed successfully!\n"
f"Processed: {result['successful_frames']}/{result['total_frames']} frames\n"
f"Time: {processing_time:.1f}s\n"
f"Average FPS: {result['total_frames'] / processing_time:.1f}\n"
f"Background: {background_choice}"
)
return output_path, success_msg
else:
# Clean up failed output
try:
os.remove(output_path)
except:
pass
return None, result['error_message']
except Exception as e:
logger.error(f"Video processing failed: {e}")
return None, f"Processing failed: {str(e)}"
finally:
self.processing_active = False
def _get_video_info(self, cap: cv2.VideoCapture) -> Dict[str, Any]:
"""Extract comprehensive video information"""
return {
'fps': cap.get(cv2.CAP_PROP_FPS),
'total_frames': int(cap.get(cv2.CAP_PROP_FRAME_COUNT)),
'width': int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
'height': int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)),
'duration': cap.get(cv2.CAP_PROP_FRAME_COUNT) / cap.get(cv2.CAP_PROP_FPS),
'codec': int(cap.get(cv2.CAP_PROP_FOURCC))
}
def _setup_output_video(self, video_info: Dict[str, Any],
preview_mask: bool, preview_greenscreen: bool) -> str:
"""Setup output video path"""
timestamp = int(time.time())
if preview_mask:
filename = f"mask_preview_{timestamp}.mp4"
elif preview_greenscreen:
filename = f"greenscreen_preview_{timestamp}.mp4"
else:
filename = f"processed_video_{timestamp}.mp4"
return os.path.join(self.config.temp_dir, filename)
def _create_video_writer(self, output_path: str,
video_info: Dict[str, Any]) -> Optional[cv2.VideoWriter]:
"""Create video writer with optimal settings"""
try:
# Choose codec based on quality settings
if self.config.output_quality == 'high':
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
else:
fourcc = cv2.VideoWriter_fourcc(*'XVID')
writer = cv2.VideoWriter(
output_path,
fourcc,
video_info['fps'],
(video_info['width'], video_info['height'])
)
if not writer.isOpened():
logger.error("Failed to open video writer")
return None
return writer
except Exception as e:
logger.error(f"Error creating video writer: {e}")
return None
def _process_video_frames(
self,
cap: cv2.VideoCapture,
out: cv2.VideoWriter,
background: np.ndarray,
video_info: Dict[str, Any],
progress_callback: Optional[Callable],
cancel_event: Optional[threading.Event],
preview_mask: bool,
preview_greenscreen: bool
) -> Dict[str, Any]:
"""Process all video frames"""
# Initialize progress tracking
prog_tracker = progress_tracker.ProgressTracker(
total_frames=video_info['total_frames'],
callback=progress_callback,
track_performance=True
)
frame_count = 0
successful_frames = 0
failed_frames = 0
# Reset mask cache
self.last_refined_mask = None
self.frame_cache.clear()
try:
prog_tracker.set_stage("Processing frames")
while True:
# Check for cancellation
if cancel_event and cancel_event.is_set():
return {
'success': False,
'error_message': 'Processing cancelled by user',
'total_frames': frame_count,
'successful_frames': successful_frames,
'failed_frames': failed_frames
}
# Read frame
ret, frame = cap.read()
if not ret:
break
try:
# Update progress
prog_tracker.update(frame_count, "Processing frame")
# Process frame
processed_frame = self._process_single_frame(
frame, background, frame_count,
preview_mask, preview_greenscreen
)
# Write processed frame
out.write(processed_frame)
successful_frames += 1
# Memory management
if frame_count % self.config.memory_cleanup_interval == 0:
self.memory_manager.auto_cleanup_if_needed()
except Exception as frame_error:
logger.warning(f"Frame {frame_count} processing failed: {frame_error}")
# Write original frame as fallback
out.write(frame)
failed_frames += 1
self.stats['failed_frames'] += 1
frame_count += 1
# Skip frames if configured (for performance)
if self.config.frame_skip > 1:
for _ in range(self.config.frame_skip - 1):
ret, _ = cap.read()
if not ret:
break
frame_count += 1
# Finalize progress tracking
final_stats = prog_tracker.finalize()
return {
'success': successful_frames > 0,
'error_message': f'No frames processed successfully' if successful_frames == 0 else '',
'total_frames': frame_count,
'successful_frames': successful_frames,
'failed_frames': failed_frames,
'processing_stats': final_stats
}
except Exception as e:
logger.error(f"Frame processing loop failed: {e}")
return {
'success': False,
'error_message': f'Frame processing failed: {str(e)}',
'total_frames': frame_count,
'successful_frames': successful_frames,
'failed_frames': failed_frames
}
def _process_single_frame(
self,
frame: np.ndarray,
background: np.ndarray,
frame_number: int,
preview_mask: bool,
preview_greenscreen: bool
) -> np.ndarray:
"""Process a single video frame"""
try:
# Person segmentation
mask = self._segment_person(frame, frame_number)
# Mask refinement (keyframe-based for performance)
if self._should_refine_mask(frame_number):
refined_mask = self._refine_mask(frame, mask, frame_number)
self.last_refined_mask = refined_mask.copy()
else:
# Use temporal consistency with previous refined mask
refined_mask = self._apply_temporal_consistency(mask, frame_number)
# Generate output based on mode
if preview_mask:
return self._create_mask_preview(frame, refined_mask)
elif preview_greenscreen:
return self._create_greenscreen_preview(frame, refined_mask)
else:
return self._replace_background(frame, refined_mask, background)
except Exception as e:
logger.warning(f"Single frame processing failed: {e}")
raise
def _segment_person(self, frame: np.ndarray, frame_number: int) -> np.ndarray:
"""Perform person segmentation"""
try:
mask = segment_person_hq(frame, self.sam2_predictor)
if mask is None or mask.size == 0:
raise exceptions.SegmentationError(frame_number, "Segmentation returned empty mask")
return mask
except Exception as e:
self.stats['segmentation_errors'] += 1
raise exceptions.SegmentationError(frame_number, f"Segmentation failed: {str(e)}")
def _should_refine_mask(self, frame_number: int) -> bool:
"""Determine if mask should be refined for this frame"""
# Refine on keyframes or if no previous refined mask exists
return (
frame_number % self.quality_settings['keyframe_interval'] == 0 or
self.last_refined_mask is None or
not self.quality_settings.get('temporal_consistency', True)
)
def _refine_mask(self, frame: np.ndarray, mask: np.ndarray, frame_number: int) -> np.ndarray:
"""Refine mask using MatAnyone or fallback methods"""
try:
if self.matanyone_model is not None and self.quality_settings.get('edge_refinement', True):
refined_mask = refine_mask_hq(frame, mask, self.matanyone_model)
else:
# Fallback refinement using OpenCV operations
refined_mask = self._fallback_mask_refinement(mask)
return refined_mask
except Exception as e:
self.stats['refinement_errors'] += 1
logger.warning(f"Mask refinement failed for frame {frame_number}: {e}")
# Return original mask as fallback
return mask
def _fallback_mask_refinement(self, mask: np.ndarray) -> np.ndarray:
"""Fallback mask refinement using basic OpenCV operations"""
try:
# Morphological operations to clean up mask
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
refined = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
refined = cv2.morphologyEx(refined, cv2.MORPH_OPEN, kernel)
# Smooth edges
refined = cv2.GaussianBlur(refined, (3, 3), 1.0)
return refined
except Exception as e:
logger.warning(f"Fallback mask refinement failed: {e}")
return mask
def _apply_temporal_consistency(self, current_mask: np.ndarray, frame_number: int) -> np.ndarray:
"""Apply temporal consistency using previous refined mask"""
if self.last_refined_mask is None or not self.quality_settings.get('temporal_consistency', True):
return current_mask
try:
# Blend current mask with previous refined mask
alpha = 0.7 # Weight for current mask
beta = 0.3 # Weight for previous mask
# Ensure masks have same shape
if current_mask.shape != self.last_refined_mask.shape:
last_mask = cv2.resize(self.last_refined_mask,
(current_mask.shape[1], current_mask.shape[0]))
else:
last_mask = self.last_refined_mask
# Weighted blend
blended_mask = cv2.addWeighted(current_mask, alpha, last_mask, beta, 0)
# Apply slight smoothing for temporal stability
blended_mask = cv2.GaussianBlur(blended_mask, (3, 3), 0.5)
return blended_mask
except Exception as e:
logger.warning(f"Temporal consistency application failed: {e}")
return current_mask
def _create_mask_preview(self, frame: np.ndarray, mask: np.ndarray) -> np.ndarray:
"""Create mask visualization preview"""
try:
# Create colored mask overlay
mask_colored = np.zeros_like(frame)
mask_colored[:, :, 1] = mask # Green channel for person
# Blend with original frame
alpha = 0.6
preview = cv2.addWeighted(frame, 1-alpha, mask_colored, alpha, 0)
return preview
except Exception as e:
logger.warning(f"Mask preview creation failed: {e}")
return frame
def _create_greenscreen_preview(self, frame: np.ndarray, mask: np.ndarray) -> np.ndarray:
"""Create green screen preview"""
try:
# Create pure green background
green_bg = np.zeros_like(frame)
green_bg[:, :] = [0, 255, 0] # Pure green in BGR
# Apply mask
mask_3ch = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) if len(mask.shape) == 2 else mask
mask_norm = mask_3ch.astype(np.float32) / 255.0
result = (frame * mask_norm + green_bg * (1 - mask_norm)).astype(np.uint8)
return result
except Exception as e:
logger.warning(f"Greenscreen preview creation failed: {e}")
return frame
def _replace_background(self, frame: np.ndarray, mask: np.ndarray, background: np.ndarray) -> np.ndarray:
"""Replace background using the refined mask"""
try:
result = replace_background_hq(frame, mask, background)
return result
except Exception as e:
logger.warning(f"Background replacement failed: {e}")
return frame
def prepare_background(
self,
background_choice: str,
custom_background_path: Optional[str],
width: int,
height: int
) -> Optional[np.ndarray]:
"""
Prepare background image for processing
Args:
background_choice: Background type or name
custom_background_path: Path to custom background
width: Target width
height: Target height
Returns:
Prepared background image or None if failed
"""
try:
if background_choice == "custom" and custom_background_path:
if not os.path.exists(custom_background_path):
raise exceptions.BackgroundProcessingError("custom", f"File not found: {custom_background_path}")
background = cv2.imread(custom_background_path)
if background is None:
raise exceptions.BackgroundProcessingError("custom", "Could not read custom background image")
logger.info(f"Loaded custom background: {custom_background_path}")
else:
# Use professional background
if background_choice not in PROFESSIONAL_BACKGROUNDS:
raise exceptions.BackgroundProcessingError(background_choice, "Unknown professional background")
bg_config = PROFESSIONAL_BACKGROUNDS[background_choice]
background = create_professional_background(bg_config, width, height)
logger.info(f"Generated professional background: {background_choice}")
# Resize to match video dimensions
if background.shape[:2] != (height, width):
background = cv2.resize(background, (width, height), interpolation=cv2.INTER_LANCZOS4)
# Validate background
if background is None or background.size == 0:
raise exceptions.BackgroundProcessingError(background_choice, "Background image is empty")
return background
except Exception as e:
if isinstance(e, exceptions.BackgroundProcessingError):
logger.error(str(e))
return None
else:
logger.error(f"Unexpected error preparing background: {e}")
return None
def _update_processing_stats(self, video_info: Dict[str, Any],
processing_time: float, result: Dict[str, Any]):
"""Update processing statistics"""
self.stats['videos_processed'] += 1
self.stats['total_frames_processed'] += result['successful_frames']
self.stats['total_processing_time'] += processing_time
self.stats['successful_frames'] += result['successful_frames']
self.stats['failed_frames'] += result['failed_frames']
# Calculate average FPS across all processing
if self.stats['total_processing_time'] > 0:
self.stats['average_fps'] = self.stats['total_frames_processed'] / self.stats['total_processing_time']
def get_processing_capabilities(self) -> Dict[str, Any]:
"""Get current processing capabilities"""
return {
'sam2_available': self.sam2_predictor is not None,
'matanyone_available': self.matanyone_model is not None,
'quality_preset': self.config.quality_preset,
'supports_temporal_consistency': self.quality_settings.get('temporal_consistency', False),
'supports_edge_refinement': self.quality_settings.get('edge_refinement', False),
'keyframe_interval': self.quality_settings['keyframe_interval'],
'max_resolution': self.config.get_resolution_limits(),
'supported_formats': ['.mp4', '.avi', '.mov', '.mkv'],
'memory_limit_gb': self.memory_manager.memory_limit_gb
}
def get_status(self) -> Dict[str, Any]:
"""Get current processor status"""
return {
'processing_active': self.processing_active,
'models_available': {
'sam2': self.sam2_predictor is not None,
'matanyone': self.matanyone_model is not None
},
'quality_settings': self.quality_settings,
'statistics': self.stats.copy(),
'cache_size': len(self.frame_cache),
'memory_usage': self.memory_manager.get_memory_usage(),
'capabilities': self.get_processing_capabilities()
}
def optimize_for_video(self, video_info: Dict[str, Any]) -> Dict[str, Any]:
"""Optimize settings for specific video characteristics"""
optimizations = {
'original_settings': self.quality_settings.copy(),
'optimizations_applied': []
}
try:
# High resolution video optimizations
if video_info['width'] * video_info['height'] > 1920 * 1080:
if self.quality_settings['keyframe_interval'] < 10:
self.quality_settings['keyframe_interval'] = 10
optimizations['optimizations_applied'].append('increased_keyframe_interval_for_high_res')
# Long video optimizations
if video_info['duration'] > 300: # 5 minutes
if self.config.memory_cleanup_interval > 20:
self.config.memory_cleanup_interval = 20
optimizations['optimizations_applied'].append('increased_memory_cleanup_frequency')
# Low FPS video optimizations
if video_info['fps'] < 15:
self.quality_settings['temporal_consistency'] = False
optimizations['optimizations_applied'].append('disabled_temporal_consistency_for_low_fps')
# Memory-constrained optimizations
memory_usage = self.memory_manager.get_memory_usage()
memory_pressure = self.memory_manager.check_memory_pressure()
if memory_pressure['under_pressure']:
self.quality_settings['edge_refinement'] = False
self.quality_settings['keyframe_interval'] = max(self.quality_settings['keyframe_interval'], 15)
optimizations['optimizations_applied'].extend([
'disabled_edge_refinement_for_memory',
'increased_keyframe_interval_for_memory'
])
optimizations['final_settings'] = self.quality_settings.copy()
if optimizations['optimizations_applied']:
logger.info(f"Applied video optimizations: {optimizations['optimizations_applied']}")
return optimizations
except Exception as e:
logger.warning(f"Video optimization failed: {e}")
return optimizations
def reset_cache(self):
"""Reset frame cache and temporal state"""
self.frame_cache.clear()
self.last_refined_mask = None
self.stats['cache_hits'] = 0
logger.debug("Frame cache and temporal state reset")
def cleanup(self):
"""Clean up processor resources"""
try:
self.reset_cache()
self.processing_active = False
logger.info("CoreVideoProcessor cleanup completed")
except Exception as e:
logger.warning(f"Error during cleanup: {e}")