MogensR's picture
Update config/app_config.py
39ad051
raw
history blame
17.4 kB
"""
BackgroundFX Pro Configuration Module
Centralizes all application configuration and environment variable handling
Note: Named 'app_config.py' to avoid conflicts with existing 'Configs/' folder
"""
import os
from dataclasses import dataclass, asdict, field
from typing import Dict, Any, Optional, List
from pathlib import Path
import logging
import json
import yaml
logger = logging.getLogger(__name__)
@dataclass
class ProcessingConfig:
"""
Main processing configuration with environment variable defaults
"""
# Application info
app_name: str = "BackgroundFX Pro"
version: str = "2.0.0"
# Frame processing settings
keyframe_interval: int = int(os.getenv('KEYFRAME_INTERVAL', '5'))
frame_skip: int = int(os.getenv('FRAME_SKIP', '1'))
# Memory management
memory_cleanup_interval: int = int(os.getenv('MEMORY_CLEANUP_INTERVAL', '30'))
memory_threshold_mb: int = int(os.getenv('MEMORY_THRESHOLD_MB', '1024'))
# Video constraints
max_video_length: int = int(os.getenv('MAX_VIDEO_LENGTH', '300')) # seconds
max_video_resolution: str = os.getenv('MAX_VIDEO_RESOLUTION', '1920x1080')
min_video_fps: int = int(os.getenv('MIN_VIDEO_FPS', '15'))
max_video_fps: int = int(os.getenv('MAX_VIDEO_FPS', '60'))
# Quality settings
quality_preset: str = os.getenv('QUALITY_PRESET', 'balanced')
# Model settings
sam2_model_size: str = os.getenv('SAM2_MODEL_SIZE', 'large') # tiny, small, base, large
matanyone_precision: str = os.getenv('MATANYONE_PRECISION', 'fp32') # fp16, fp32
model_device: str = os.getenv('MODEL_DEVICE', 'auto') # auto, cuda, cpu
# Processing settings
temporal_consistency: bool = os.getenv('TEMPORAL_CONSISTENCY', 'true').lower() == 'true'
edge_refinement: bool = os.getenv('EDGE_REFINEMENT', 'true').lower() == 'true'
mask_blur_radius: int = int(os.getenv('MASK_BLUR_RADIUS', '5'))
confidence_threshold: float = float(os.getenv('CONFIDENCE_THRESHOLD', '0.85'))
background_preset: str = os.getenv('BACKGROUND_PRESET', 'minimalist')
# Output settings
output_dir: str = os.getenv('OUTPUT_DIR', 'outputs')
output_format: str = os.getenv('OUTPUT_FORMAT', 'mp4')
output_quality: str = os.getenv('OUTPUT_QUALITY', 'high') # low, medium, high
output_codec: str = os.getenv('OUTPUT_CODEC', 'h264')
write_fps: Optional[float] = None
preserve_audio: bool = os.getenv('PRESERVE_AUDIO', 'true').lower() == 'true'
# Cache settings
model_cache_dir: str = os.getenv('MODEL_CACHE_DIR', 'models/cache')
temp_dir: str = os.getenv('TEMP_DIR', 'temp')
cleanup_temp_files: bool = os.getenv('CLEANUP_TEMP_FILES', 'true').lower() == 'true'
cache_size_limit_gb: float = float(os.getenv('CACHE_SIZE_LIMIT_GB', '10.0'))
# Performance settings
max_concurrent_processes: int = int(os.getenv('MAX_CONCURRENT_PROCESSES', '1'))
gpu_memory_fraction: float = float(os.getenv('GPU_MEMORY_FRACTION', '0.8'))
batch_size: int = int(os.getenv('BATCH_SIZE', '4'))
num_workers: int = int(os.getenv('NUM_WORKERS', '4'))
# API settings
api_enabled: bool = os.getenv('API_ENABLED', 'false').lower() == 'true'
api_host: str = os.getenv('API_HOST', '0.0.0.0')
api_port: int = int(os.getenv('API_PORT', '8000'))
api_key: Optional[str] = os.getenv('API_KEY', None)
# Web UI settings
gradio_server_name: str = os.getenv('GRADIO_SERVER_NAME', '0.0.0.0')
gradio_server_port: int = int(os.getenv('GRADIO_SERVER_PORT', '7860'))
gradio_share: bool = os.getenv('GRADIO_SHARE', 'false').lower() == 'true'
gradio_auth: Optional[str] = os.getenv('GRADIO_AUTH', None) # username:password
# Debug settings
debug_mode: bool = os.getenv('DEBUG_MODE', 'false').lower() == 'true'
save_intermediate_results: bool = os.getenv('SAVE_INTERMEDIATE_RESULTS', 'false').lower() == 'true'
log_level: str = os.getenv('LOG_LEVEL', 'INFO')
profile_performance: bool = os.getenv('PROFILE_PERFORMANCE', 'false').lower() == 'true'
# Feature flags
enable_two_stage: bool = os.getenv('ENABLE_TWO_STAGE', 'true').lower() == 'true'
enable_preview_modes: bool = os.getenv('ENABLE_PREVIEW_MODES', 'true').lower() == 'true'
enable_batch_processing: bool = os.getenv('ENABLE_BATCH_PROCESSING', 'false').lower() == 'true'
# Legacy compatibility
legacy_mode: bool = os.getenv('LEGACY_MODE', 'true').lower() == 'true'
legacy_configs_dir: str = os.getenv('LEGACY_CONFIGS_DIR', 'Configs')
def __post_init__(self):
"""Validate configuration after initialization"""
self._validate_config()
self._create_directories()
self._setup_logging()
if self.debug_mode:
self._log_config()
def _validate_config(self):
"""Validate configuration values"""
# Validate frame settings
self.keyframe_interval = max(1, self.keyframe_interval)
self.frame_skip = max(1, self.frame_skip)
# Validate memory settings
self.memory_cleanup_interval = max(1, self.memory_cleanup_interval)
self.memory_threshold_mb = max(256, self.memory_threshold_mb)
# Validate video constraints
self.max_video_length = max(1, self.max_video_length)
self.min_video_fps = max(1, min(self.min_video_fps, 60))
self.max_video_fps = max(self.min_video_fps, min(self.max_video_fps, 120))
# Validate resolution format
if 'x' not in self.max_video_resolution:
logger.warning(f"Invalid resolution format: {self.max_video_resolution}. Setting to 1920x1080.")
self.max_video_resolution = '1920x1080'
# Validate quality preset
valid_presets = ['fast', 'balanced', 'high', 'ultra']
if self.quality_preset not in valid_presets:
logger.warning(f"Invalid quality preset: {self.quality_preset}. Setting to 'balanced'.")
self.quality_preset = 'balanced'
# Validate model settings
valid_sam2_sizes = ['tiny', 'small', 'base', 'large']
if self.sam2_model_size not in valid_sam2_sizes:
logger.warning(f"Invalid SAM2 model size: {self.sam2_model_size}. Setting to 'large'.")
self.sam2_model_size = 'large'
valid_precisions = ['fp16', 'fp32']
if self.matanyone_precision not in valid_precisions:
logger.warning(f"Invalid precision: {self.matanyone_precision}. Setting to 'fp32'.")
self.matanyone_precision = 'fp32'
# Validate output settings
valid_formats = ['mp4', 'avi', 'mov', 'webm', 'mkv']
if self.output_format not in valid_formats:
logger.warning(f"Invalid output format: {self.output_format}. Setting to 'mp4'.")
self.output_format = 'mp4'
valid_qualities = ['low', 'medium', 'high', 'ultra']
if self.output_quality not in valid_qualities:
logger.warning(f"Invalid output quality: {self.output_quality}. Setting to 'high'.")
self.output_quality = 'high'
# Validate performance settings
self.max_concurrent_processes = max(1, self.max_concurrent_processes)
self.gpu_memory_fraction = max(0.1, min(1.0, self.gpu_memory_fraction))
self.batch_size = max(1, self.batch_size)
self.num_workers = max(0, self.num_workers)
# Validate API settings
self.api_port = max(1024, min(65535, self.api_port))
# Validate confidence threshold
self.confidence_threshold = max(0.0, min(1.0, self.confidence_threshold))
# Validate cache size
self.cache_size_limit_gb = max(0.1, self.cache_size_limit_gb)
def _create_directories(self):
"""Create necessary directories if they don't exist"""
directories = [
self.model_cache_dir,
self.temp_dir,
self.output_dir,
Path(self.output_dir) / 'masks',
Path(self.output_dir) / 'greenscreen',
Path(self.output_dir) / 'final',
Path(self.output_dir) / 'two_stage'
]
for directory in directories:
try:
Path(directory).mkdir(parents=True, exist_ok=True)
logger.debug(f"Ensured directory exists: {directory}")
except Exception as e:
logger.error(f"Failed to create directory {directory}: {e}")
def _setup_logging(self):
"""Setup logging based on configuration"""
log_levels = {
'DEBUG': logging.DEBUG,
'INFO': logging.INFO,
'WARNING': logging.WARNING,
'ERROR': logging.ERROR,
'CRITICAL': logging.CRITICAL
}
level = log_levels.get(self.log_level.upper(), logging.INFO)
logging.getLogger().setLevel(level)
def _log_config(self):
"""Log current configuration in debug mode"""
logger.info("=" * 60)
logger.info(f"{self.app_name} v{self.version} Configuration")
logger.info("=" * 60)
config_dict = self.to_dict()
# Hide sensitive information
if config_dict.get('api_key'):
config_dict['api_key'] = '***hidden***'
if config_dict.get('gradio_auth'):
config_dict['gradio_auth'] = '***hidden***'
for key, value in config_dict.items():
logger.info(f"{key}: {value}")
logger.info("=" * 60)
def to_dict(self) -> Dict[str, Any]:
"""Convert configuration to dictionary"""
return asdict(self)
def to_json(self, filepath: Optional[str] = None) -> str:
"""Export configuration to JSON"""
config_dict = self.to_dict()
if filepath:
with open(filepath, 'w') as f:
json.dump(config_dict, f, indent=2)
logger.info(f"Configuration saved to {filepath}")
return json.dumps(config_dict, indent=2)
def to_yaml(self, filepath: Optional[str] = None) -> str:
"""Export configuration to YAML"""
config_dict = self.to_dict()
if filepath:
with open(filepath, 'w') as f:
yaml.dump(config_dict, f, default_flow_style=False)
logger.info(f"Configuration saved to {filepath}")
return yaml.dump(config_dict, default_flow_style=False)
@classmethod
def from_json(cls, filepath: str) -> 'ProcessingConfig':
"""Load configuration from JSON file"""
with open(filepath, 'r') as f:
config_dict = json.load(f)
return cls(**config_dict)
@classmethod
def from_yaml(cls, filepath: str) -> 'ProcessingConfig':
"""Load configuration from YAML file"""
with open(filepath, 'r') as f:
config_dict = yaml.safe_load(f)
return cls(**config_dict)
def get_quality_settings(self) -> Dict[str, Any]:
"""Get quality-specific settings based on preset"""
quality_maps = {
'fast': {
'keyframe_interval': max(self.keyframe_interval, 10),
'frame_skip': max(self.frame_skip, 2),
'edge_refinement': False,
'temporal_consistency': False,
'model_precision': 'fp16',
'batch_size': min(self.batch_size * 2, 16),
'output_quality_params': '-preset ultrafast -crf 28'
},
'balanced': {
'keyframe_interval': self.keyframe_interval,
'frame_skip': self.frame_skip,
'edge_refinement': True,
'temporal_consistency': True,
'model_precision': 'fp32',
'batch_size': self.batch_size,
'output_quality_params': '-preset medium -crf 23'
},
'high': {
'keyframe_interval': max(self.keyframe_interval // 2, 1),
'frame_skip': 1,
'edge_refinement': True,
'temporal_consistency': True,
'model_precision': 'fp32',
'batch_size': max(self.batch_size // 2, 1),
'output_quality_params': '-preset slow -crf 18'
},
'ultra': {
'keyframe_interval': 1,
'frame_skip': 1,
'edge_refinement': True,
'temporal_consistency': True,
'model_precision': 'fp32',
'batch_size': 1,
'output_quality_params': '-preset veryslow -crf 15'
}
}
return quality_maps.get(self.quality_preset, quality_maps['balanced'])
def get_resolution_limits(self) -> tuple[int, int]:
"""Get max width and height from resolution setting"""
try:
width, height = map(int, self.max_video_resolution.split('x'))
return width, height
except ValueError:
logger.error(f"Invalid resolution format: {self.max_video_resolution}")
return 1920, 1080
def get_output_params(self) -> Dict[str, str]:
"""Get FFmpeg output parameters based on settings"""
quality_settings = self.get_quality_settings()
codec_map = {
'h264': 'libx264',
'h265': 'libx265',
'vp9': 'libvpx-vp9',
'av1': 'libaom-av1'
}
return {
'codec': codec_map.get(self.output_codec, 'libx264'),
'quality': quality_settings['output_quality_params'],
'format': self.output_format,
'audio': '-c:a copy' if self.preserve_audio else '-an'
}
def is_high_performance_mode(self) -> bool:
"""Check if configuration is set for high performance"""
return (
self.quality_preset in ['high', 'ultra'] and
self.edge_refinement and
self.temporal_consistency and
self.keyframe_interval <= 3
)
def get_memory_limits(self) -> Dict[str, Any]:
"""Get memory-related limits"""
return {
'gpu_memory_fraction': self.gpu_memory_fraction,
'cleanup_interval': self.memory_cleanup_interval,
'max_concurrent': self.max_concurrent_processes,
'threshold_mb': self.memory_threshold_mb,
'cache_size_gb': self.cache_size_limit_gb
}
def validate_for_production(self) -> List[str]:
"""Validate configuration for production deployment"""
warnings = []
if self.debug_mode:
warnings.append("Debug mode is enabled in production")
if self.save_intermediate_results:
warnings.append("Intermediate results saving is enabled (disk usage)")
if not self.cleanup_temp_files:
warnings.append("Temp file cleanup is disabled (disk usage)")
if self.gradio_share:
warnings.append("Gradio share is enabled (security risk)")
if not self.api_key and self.api_enabled:
warnings.append("API is enabled without authentication")
if self.gpu_memory_fraction > 0.9:
warnings.append("GPU memory fraction is very high (>90%)")
if self.max_concurrent_processes > 4:
warnings.append("High concurrent processes may cause instability")
return warnings
# Singleton instance for application-wide use
_config_instance: Optional[ProcessingConfig] = None
def get_config() -> ProcessingConfig:
"""Get global configuration instance"""
global _config_instance
if _config_instance is None:
_config_instance = ProcessingConfig()
return _config_instance
def reload_config() -> ProcessingConfig:
"""Reload configuration from environment variables"""
global _config_instance
_config_instance = ProcessingConfig()
logger.info("Configuration reloaded from environment variables")
return _config_instance
def update_config(**kwargs) -> ProcessingConfig:
"""Update configuration with new values"""
global _config_instance
if _config_instance is None:
_config_instance = ProcessingConfig()
for key, value in kwargs.items():
if hasattr(_config_instance, key):
setattr(_config_instance, key, value)
logger.debug(f"Updated config: {key} = {value}")
else:
logger.warning(f"Unknown configuration key: {key}")
# Re-validate after updates
_config_instance._validate_config()
return _config_instance
def load_config_from_file(filepath: str) -> ProcessingConfig:
"""Load configuration from file (JSON or YAML)"""
global _config_instance
file_path = Path(filepath)
if not file_path.exists():
raise FileNotFoundError(f"Configuration file not found: {filepath}")
if file_path.suffix.lower() in ['.json']:
_config_instance = ProcessingConfig.from_json(filepath)
elif file_path.suffix.lower() in ['.yaml', '.yml']:
_config_instance = ProcessingConfig.from_yaml(filepath)
else:
raise ValueError(f"Unsupported configuration file format: {file_path.suffix}")
logger.info(f"Configuration loaded from {filepath}")
return _config_instance