MogensR's picture
Create core/edge.py
e9f947a
raw
history blame
19.5 kB
"""
Edge processing and symmetry correction for BackgroundFX Pro.
Fixes hair segmentation asymmetry and improves edge quality.
"""
import numpy as np
import cv2
import torch
import torch.nn.functional as F
from typing import Dict, List, Optional, Tuple, Any
from dataclasses import dataclass
from scipy import ndimage, signal
from scipy.spatial import distance
import logging
logger = logging.getLogger(__name__)
@dataclass
class EdgeConfig:
"""Configuration for edge processing."""
edge_thickness: int = 3
smoothing_iterations: int = 2
symmetry_threshold: float = 0.3
hair_detection_sensitivity: float = 0.7
refinement_radius: int = 5
use_guided_filter: bool = True
bilateral_d: int = 9
bilateral_sigma_color: float = 75
bilateral_sigma_space: float = 75
morphology_kernel_size: int = 5
edge_preservation_weight: float = 0.8
class EdgeProcessor:
"""Main edge processing and refinement system."""
def __init__(self, config: Optional[EdgeConfig] = None):
self.config = config or EdgeConfig()
self.hair_segmentation = HairSegmentation(config)
self.edge_refinement = EdgeRefinement(config)
self.symmetry_corrector = SymmetryCorrector(config)
def process(self, image: np.ndarray, mask: np.ndarray,
detect_hair: bool = True) -> np.ndarray:
"""Process edges with full pipeline."""
# 1. Initial edge detection
edges = self._detect_edges(mask)
# 2. Hair-specific processing
if detect_hair:
hair_mask = self.hair_segmentation.segment(image, mask)
mask = self._blend_hair_mask(mask, hair_mask)
# 3. Symmetry correction
mask = self.symmetry_corrector.correct(mask, image)
# 4. Edge refinement
mask = self.edge_refinement.refine(image, mask, edges)
# 5. Final smoothing
mask = self._final_smoothing(mask)
return mask
def _detect_edges(self, mask: np.ndarray) -> np.ndarray:
"""Detect edges in mask."""
# Convert to uint8
mask_uint8 = (mask * 255).astype(np.uint8)
# Multi-scale edge detection
edges1 = cv2.Canny(mask_uint8, 50, 150)
edges2 = cv2.Canny(mask_uint8, 30, 100)
edges3 = cv2.Canny(mask_uint8, 70, 200)
# Combine edges
edges = np.maximum(edges1, np.maximum(edges2, edges3))
return edges / 255.0
def _blend_hair_mask(self, original_mask: np.ndarray,
hair_mask: np.ndarray) -> np.ndarray:
"""Blend hair mask with original mask."""
# Find hair regions
hair_regions = hair_mask > 0.5
# Smooth blending
alpha = 0.7 # Hair mask weight
blended = original_mask.copy()
blended[hair_regions] = (
alpha * hair_mask[hair_regions] +
(1 - alpha) * original_mask[hair_regions]
)
return blended
def _final_smoothing(self, mask: np.ndarray) -> np.ndarray:
"""Apply final smoothing pass."""
# Guided filter for edge-preserving smoothing
if self.config.use_guided_filter:
mask = self._guided_filter(mask, mask)
# Morphological smoothing
kernel = cv2.getStructuringElement(
cv2.MORPH_ELLIPSE,
(self.config.morphology_kernel_size, self.config.morphology_kernel_size)
)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
return mask
def _guided_filter(self, input_img: np.ndarray,
guidance: np.ndarray,
radius: int = 4,
epsilon: float = 0.2**2) -> np.ndarray:
"""Apply guided filter for edge-preserving smoothing."""
# Implementation of guided filter
mean_I = cv2.boxFilter(guidance, cv2.CV_64F, (radius, radius))
mean_p = cv2.boxFilter(input_img, cv2.CV_64F, (radius, radius))
mean_Ip = cv2.boxFilter(guidance * input_img, cv2.CV_64F, (radius, radius))
cov_Ip = mean_Ip - mean_I * mean_p
mean_II = cv2.boxFilter(guidance * guidance, cv2.CV_64F, (radius, radius))
var_I = mean_II - mean_I * mean_I
a = cov_Ip / (var_I + epsilon)
b = mean_p - a * mean_I
mean_a = cv2.boxFilter(a, cv2.CV_64F, (radius, radius))
mean_b = cv2.boxFilter(b, cv2.CV_64F, (radius, radius))
q = mean_a * guidance + mean_b
return q
class HairSegmentation:
"""Specialized hair segmentation module."""
def __init__(self, config: EdgeConfig):
self.config = config
self.hair_detector = HairDetector()
def segment(self, image: np.ndarray, initial_mask: np.ndarray) -> np.ndarray:
"""Segment hair regions with improved accuracy."""
# 1. Detect hair regions
hair_probability = self.hair_detector.detect(image)
# 2. Refine with initial mask
hair_mask = self._refine_with_mask(hair_probability, initial_mask)
# 3. Fix asymmetry specific to hair
hair_mask = self._fix_hair_asymmetry(hair_mask, image)
# 4. Enhance hair strands
hair_mask = self._enhance_hair_strands(hair_mask, image)
return hair_mask
def _refine_with_mask(self, hair_prob: np.ndarray,
initial_mask: np.ndarray) -> np.ndarray:
"""Refine hair probability with initial mask."""
# Only keep hair within or near initial mask
kernel = np.ones((15, 15), np.uint8)
dilated_mask = cv2.dilate(initial_mask, kernel, iterations=2)
# Combine probabilities
refined = hair_prob * dilated_mask
# Threshold
threshold = self.config.hair_detection_sensitivity
hair_mask = (refined > threshold).astype(np.float32)
# Smooth
hair_mask = cv2.GaussianBlur(hair_mask, (5, 5), 1.0)
return hair_mask
def _fix_hair_asymmetry(self, mask: np.ndarray,
image: np.ndarray) -> np.ndarray:
"""Fix asymmetry in hair segmentation."""
h, w = mask.shape[:2]
center_x = w // 2
# Split mask into left and right
left_mask = mask[:, :center_x]
right_mask = mask[:, center_x:]
# Flip right for comparison
right_flipped = np.fliplr(right_mask)
# Compute difference
if left_mask.shape[1] == right_flipped.shape[1]:
diff = np.abs(left_mask - right_flipped)
asymmetry_score = np.mean(diff)
if asymmetry_score > self.config.symmetry_threshold:
logger.info(f"Detected hair asymmetry: {asymmetry_score:.3f}")
# Balance the masks
balanced_left = 0.5 * left_mask + 0.5 * right_flipped
balanced_right = np.fliplr(0.5 * right_mask + 0.5 * np.fliplr(left_mask))
# Reconstruct
mask[:, :center_x] = balanced_left
mask[:, center_x:center_x + balanced_right.shape[1]] = balanced_right
return mask
def _enhance_hair_strands(self, mask: np.ndarray,
image: np.ndarray) -> np.ndarray:
"""Enhance fine hair strands."""
# Convert image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
# Detect fine structures using Gabor filters
enhanced_mask = mask.copy()
# Multiple orientations for Gabor filters
orientations = [0, 45, 90, 135]
gabor_responses = []
for angle in orientations:
theta = np.deg2rad(angle)
kernel = cv2.getGaborKernel(
(21, 21), 4.0, theta, 10.0, 0.5, 0, ktype=cv2.CV_32F
)
filtered = cv2.filter2D(gray, cv2.CV_32F, kernel)
gabor_responses.append(np.abs(filtered))
# Combine Gabor responses
gabor_max = np.max(gabor_responses, axis=0)
gabor_normalized = gabor_max / (np.max(gabor_max) + 1e-6)
# Enhance mask in high-response areas
hair_enhancement = gabor_normalized * (1 - mask)
enhanced_mask = np.clip(mask + 0.3 * hair_enhancement, 0, 1)
return enhanced_mask
class HairDetector:
"""Detects hair regions in images."""
def detect(self, image: np.ndarray) -> np.ndarray:
"""Detect hair probability map."""
# Convert to appropriate color spaces
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)
# Hair color detection in HSV
hair_colors = [
# Black hair
((0, 0, 0), (180, 255, 30)),
# Brown hair
((10, 20, 20), (20, 255, 100)),
# Blonde hair
((15, 30, 50), (25, 255, 200)),
# Red hair
((0, 50, 50), (10, 255, 150)),
]
hair_masks = []
for (lower, upper) in hair_colors:
mask = cv2.inRange(hsv, np.array(lower), np.array(upper))
hair_masks.append(mask)
# Combine color masks
color_mask = np.max(hair_masks, axis=0) / 255.0
# Texture analysis for hair-like patterns
texture_mask = self._detect_hair_texture(image)
# Combine color and texture
hair_probability = 0.6 * color_mask + 0.4 * texture_mask
# Smooth the probability map
hair_probability = cv2.GaussianBlur(hair_probability, (7, 7), 2.0)
return hair_probability
def _detect_hair_texture(self, image: np.ndarray) -> np.ndarray:
"""Detect hair-like texture patterns."""
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
# Compute texture features using LBP-like approach
texture_score = np.zeros_like(gray, dtype=np.float32)
# Directional derivatives
dx = cv2.Sobel(gray, cv2.CV_32F, 1, 0, ksize=3)
dy = cv2.Sobel(gray, cv2.CV_32F, 0, 1, ksize=3)
# Gradient magnitude and orientation
magnitude = np.sqrt(dx**2 + dy**2)
orientation = np.arctan2(dy, dx)
# Hair tends to have consistent local orientation
# Compute local orientation consistency
window_size = 9
kernel = np.ones((window_size, window_size)) / (window_size**2)
# Local orientation variance (low variance = consistent = hair-like)
orient_mean = cv2.filter2D(orientation, -1, kernel)
orient_sq_mean = cv2.filter2D(orientation**2, -1, kernel)
orient_var = orient_sq_mean - orient_mean**2
# Low variance and high magnitude indicates hair
texture_score = magnitude * np.exp(-orient_var)
# Normalize
texture_score = texture_score / (np.max(texture_score) + 1e-6)
return texture_score
class EdgeRefinement:
"""Refines edges for better quality."""
def __init__(self, config: EdgeConfig):
self.config = config
def refine(self, image: np.ndarray, mask: np.ndarray,
edges: np.ndarray) -> np.ndarray:
"""Refine mask edges."""
# 1. Bilateral filtering for edge-aware smoothing
refined = self._bilateral_smooth(mask, image)
# 2. Snap to image edges
refined = self._snap_to_edges(refined, image, edges)
# 3. Subpixel refinement
refined = self._subpixel_refinement(refined, image)
# 4. Feathering
refined = self._apply_feathering(refined)
return refined
def _bilateral_smooth(self, mask: np.ndarray,
image: np.ndarray) -> np.ndarray:
"""Apply bilateral filtering for edge-aware smoothing."""
# Convert mask to uint8 for bilateral filter
mask_uint8 = (mask * 255).astype(np.uint8)
# Apply bilateral filter
smoothed = cv2.bilateralFilter(
mask_uint8,
self.config.bilateral_d,
self.config.bilateral_sigma_color,
self.config.bilateral_sigma_space
)
return smoothed / 255.0
def _snap_to_edges(self, mask: np.ndarray, image: np.ndarray,
detected_edges: np.ndarray) -> np.ndarray:
"""Snap mask boundaries to image edges."""
# Detect strong edges in image
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
image_edges = cv2.Canny(gray, 50, 150) / 255.0
# Find mask edges
mask_edges = cv2.Canny((mask * 255).astype(np.uint8), 50, 150) / 255.0
# Distance transform from image edges
dist_transform = cv2.distanceTransform(
(1 - image_edges).astype(np.uint8),
cv2.DIST_L2, 5
)
# Snap mask edges to nearby image edges
snap_radius = self.config.refinement_radius
refined = mask.copy()
# For pixels near mask edges
edge_region = cv2.dilate(mask_edges, np.ones((5, 5))) > 0
# If close to image edge, strengthen the mask edge
close_to_image_edge = (dist_transform < snap_radius) & edge_region
refined[close_to_image_edge] = np.where(
mask[close_to_image_edge] > 0.5, 1.0, 0.0
)
return refined
def _subpixel_refinement(self, mask: np.ndarray,
image: np.ndarray) -> np.ndarray:
"""Apply subpixel refinement to edges."""
# Use image gradient for subpixel accuracy
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
# Compute gradients
grad_x = cv2.Sobel(gray, cv2.CV_32F, 1, 0, ksize=3)
grad_y = cv2.Sobel(gray, cv2.CV_32F, 0, 1, ksize=3)
grad_mag = np.sqrt(grad_x**2 + grad_y**2)
# Normalize gradient
grad_mag = grad_mag / (np.max(grad_mag) + 1e-6)
# Refine mask edges based on gradient
# Strong gradients push toward binary values
refined = mask.copy()
strong_gradient = grad_mag > 0.3
refined[strong_gradient] = np.where(
mask[strong_gradient] > 0.5,
np.minimum(mask[strong_gradient] + 0.1, 1.0),
np.maximum(mask[strong_gradient] - 0.1, 0.0)
)
return refined
def _apply_feathering(self, mask: np.ndarray,
radius: int = 3) -> np.ndarray:
"""Apply feathering to edges."""
# Distance transform from edges
mask_binary = (mask > 0.5).astype(np.uint8)
# Distance from outside
dist_outside = cv2.distanceTransform(
mask_binary, cv2.DIST_L2, 5
)
# Distance from inside
dist_inside = cv2.distanceTransform(
1 - mask_binary, cv2.DIST_L2, 5
)
# Create feathering
feather_region = (dist_outside <= radius) | (dist_inside <= radius)
if np.any(feather_region):
# Smooth transition in feather region
alpha = np.zeros_like(mask)
alpha[dist_outside > radius] = 1.0
alpha[feather_region] = dist_outside[feather_region] / radius
# Blend
mask = mask * (1 - feather_region) + alpha * feather_region
return mask
class SymmetryCorrector:
"""Corrects asymmetry in masks."""
def __init__(self, config: EdgeConfig):
self.config = config
def correct(self, mask: np.ndarray, image: np.ndarray) -> np.ndarray:
"""Correct asymmetry in mask."""
# Detect face/object center
center = self._find_center(mask)
# Check asymmetry
asymmetry_score = self._compute_asymmetry(mask, center)
if asymmetry_score > self.config.symmetry_threshold:
logger.info(f"Correcting asymmetry: {asymmetry_score:.3f}")
mask = self._balance_mask(mask, center)
return mask
def _find_center(self, mask: np.ndarray) -> int:
"""Find vertical center of object."""
# Use center of mass
mask_binary = (mask > 0.5).astype(np.uint8)
moments = cv2.moments(mask_binary)
if moments['m00'] > 0:
cx = int(moments['m10'] / moments['m00'])
return cx
else:
return mask.shape[1] // 2
def _compute_asymmetry(self, mask: np.ndarray, center: int) -> float:
"""Compute asymmetry score."""
h, w = mask.shape[:2]
# Split at center
left_width = center
right_width = w - center
min_width = min(left_width, right_width)
if min_width <= 0:
return 0.0
# Compare left and right
left = mask[:, center-min_width:center]
right = mask[:, center:center+min_width]
# Flip right for comparison
right_flipped = np.fliplr(right)
# Compute difference
diff = np.abs(left - right_flipped)
asymmetry = np.mean(diff)
return asymmetry
def _balance_mask(self, mask: np.ndarray, center: int) -> np.ndarray:
"""Balance mask to reduce asymmetry."""
h, w = mask.shape[:2]
balanced = mask.copy()
# Split at center
left_width = center
right_width = w - center
min_width = min(left_width, right_width)
if min_width <= 0:
return mask
# Get regions
left = mask[:, center-min_width:center]
right = mask[:, center:center+min_width]
# Weight based on confidence (higher values = more confident)
left_confidence = np.mean(np.abs(left - 0.5))
right_confidence = np.mean(np.abs(right - 0.5))
# Weighted average favoring more confident side
total_conf = left_confidence + right_confidence + 1e-6
left_weight = left_confidence / total_conf
right_weight = right_confidence / total_conf
# Balance
balanced_left = left_weight * left + right_weight * np.fliplr(right)
balanced_right = right_weight * right + left_weight * np.fliplr(left)
# Apply balanced versions
balanced[:, center-min_width:center] = balanced_left
balanced[:, center:center+min_width] = balanced_right
# Smooth the center seam
seam_width = 5
seam_start = max(0, center - seam_width)
seam_end = min(w, center + seam_width)
balanced[:, seam_start:seam_end] = cv2.GaussianBlur(
balanced[:, seam_start:seam_end], (5, 1), 1.0
)
return balanced
# Export classes
__all__ = [
'EdgeProcessor',
'EdgeConfig',
'HairSegmentation',
'EdgeRefinement',
'SymmetryCorrector',
'HairDetector'
]