|
|
"""
|
|
|
For computing auxiliary outputs for auxiliary losses
|
|
|
"""
|
|
|
from typing import Dict
|
|
|
from omegaconf import DictConfig
|
|
|
import torch
|
|
|
import torch.nn as nn
|
|
|
|
|
|
from matanyone.model.group_modules import GConv2d
|
|
|
from matanyone.utils.tensor_utils import aggregate
|
|
|
|
|
|
|
|
|
class LinearPredictor(nn.Module):
|
|
|
def __init__(self, x_dim: int, pix_dim: int):
|
|
|
super().__init__()
|
|
|
self.projection = GConv2d(x_dim, pix_dim + 1, kernel_size=1)
|
|
|
|
|
|
def forward(self, pix_feat: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
|
|
|
|
|
|
|
|
|
num_objects = x.shape[1]
|
|
|
x = self.projection(x)
|
|
|
|
|
|
pix_feat = pix_feat.unsqueeze(1).expand(-1, num_objects, -1, -1, -1)
|
|
|
logits = (pix_feat * x[:, :, :-1]).sum(dim=2) + x[:, :, -1]
|
|
|
return logits
|
|
|
|
|
|
|
|
|
class DirectPredictor(nn.Module):
|
|
|
def __init__(self, x_dim: int):
|
|
|
super().__init__()
|
|
|
self.projection = GConv2d(x_dim, 1, kernel_size=1)
|
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
|
|
|
|
logits = self.projection(x).squeeze(2)
|
|
|
return logits
|
|
|
|
|
|
|
|
|
class AuxComputer(nn.Module):
|
|
|
def __init__(self, cfg: DictConfig):
|
|
|
super().__init__()
|
|
|
|
|
|
use_sensory_aux = cfg.model.aux_loss.sensory.enabled
|
|
|
self.use_query_aux = cfg.model.aux_loss.query.enabled
|
|
|
self.use_sensory_aux = use_sensory_aux
|
|
|
|
|
|
sensory_dim = cfg.model.sensory_dim
|
|
|
embed_dim = cfg.model.embed_dim
|
|
|
|
|
|
if use_sensory_aux:
|
|
|
self.sensory_aux = LinearPredictor(sensory_dim, embed_dim)
|
|
|
|
|
|
def _aggregate_with_selector(self, logits: torch.Tensor, selector: torch.Tensor) -> torch.Tensor:
|
|
|
prob = torch.sigmoid(logits)
|
|
|
if selector is not None:
|
|
|
prob = prob * selector
|
|
|
logits = aggregate(prob, dim=1)
|
|
|
return logits
|
|
|
|
|
|
def forward(self, pix_feat: torch.Tensor, aux_input: Dict[str, torch.Tensor],
|
|
|
selector: torch.Tensor, seg_pass=False) -> Dict[str, torch.Tensor]:
|
|
|
sensory = aux_input['sensory']
|
|
|
q_logits = aux_input['q_logits']
|
|
|
|
|
|
aux_output = {}
|
|
|
aux_output['attn_mask'] = aux_input['attn_mask']
|
|
|
|
|
|
if self.use_sensory_aux:
|
|
|
|
|
|
logits = self.sensory_aux(pix_feat, sensory)
|
|
|
aux_output['sensory_logits'] = self._aggregate_with_selector(logits, selector)
|
|
|
if self.use_query_aux:
|
|
|
|
|
|
aux_output['q_logits'] = self._aggregate_with_selector(
|
|
|
torch.stack(q_logits, dim=2),
|
|
|
selector.unsqueeze(2) if selector is not None else None)
|
|
|
|
|
|
return aux_output
|
|
|
|
|
|
def compute_mask(self, aux_input: Dict[str, torch.Tensor],
|
|
|
selector: torch.Tensor) -> Dict[str, torch.Tensor]:
|
|
|
|
|
|
q_logits = aux_input['q_logits']
|
|
|
|
|
|
aux_output = {}
|
|
|
|
|
|
|
|
|
aux_output['q_logits'] = self._aggregate_with_selector(
|
|
|
torch.stack(q_logits, dim=2),
|
|
|
selector.unsqueeze(2) if selector is not None else None)
|
|
|
|
|
|
return aux_output
|
|
|
|