|
|
""" |
|
|
Model registry for BackgroundFX Pro. |
|
|
Manages available models, versions, and metadata. |
|
|
""" |
|
|
|
|
|
import json |
|
|
import hashlib |
|
|
from pathlib import Path |
|
|
from typing import Dict, List, Optional, Any, Tuple |
|
|
from dataclasses import dataclass, field, asdict |
|
|
from enum import Enum |
|
|
from datetime import datetime |
|
|
import requests |
|
|
import yaml |
|
|
import logging |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
class ModelStatus(Enum): |
|
|
"""Model availability status.""" |
|
|
AVAILABLE = "available" |
|
|
DOWNLOADING = "downloading" |
|
|
NOT_DOWNLOADED = "not_downloaded" |
|
|
CORRUPTED = "corrupted" |
|
|
DEPRECATED = "deprecated" |
|
|
|
|
|
|
|
|
class ModelTask(Enum): |
|
|
"""Model task types.""" |
|
|
SEGMENTATION = "segmentation" |
|
|
MATTING = "matting" |
|
|
ENHANCEMENT = "enhancement" |
|
|
DETECTION = "detection" |
|
|
BACKGROUND_GEN = "background_generation" |
|
|
|
|
|
|
|
|
class ModelFramework(Enum): |
|
|
"""Supported frameworks.""" |
|
|
PYTORCH = "pytorch" |
|
|
ONNX = "onnx" |
|
|
TENSORRT = "tensorrt" |
|
|
COREML = "coreml" |
|
|
TFLITE = "tflite" |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class ModelInfo: |
|
|
"""Model information and metadata.""" |
|
|
|
|
|
model_id: str |
|
|
name: str |
|
|
version: str |
|
|
task: ModelTask |
|
|
framework: ModelFramework |
|
|
|
|
|
|
|
|
url: str |
|
|
mirror_urls: List[str] = field(default_factory=list) |
|
|
filename: str = "" |
|
|
file_size: int = 0 |
|
|
sha256: Optional[str] = None |
|
|
|
|
|
|
|
|
description: str = "" |
|
|
author: str = "" |
|
|
license: str = "" |
|
|
paper_url: Optional[str] = None |
|
|
github_url: Optional[str] = None |
|
|
|
|
|
|
|
|
accuracy: Optional[float] = None |
|
|
speed_fps: Optional[float] = None |
|
|
memory_mb: Optional[int] = None |
|
|
|
|
|
|
|
|
min_gpu_memory_gb: float = 0 |
|
|
min_ram_gb: float = 2 |
|
|
requires_gpu: bool = False |
|
|
supported_platforms: List[str] = field(default_factory=lambda: ["windows", "linux", "macos"]) |
|
|
|
|
|
|
|
|
input_size: Optional[Tuple[int, int]] = None |
|
|
batch_size: int = 1 |
|
|
config: Dict[str, Any] = field(default_factory=dict) |
|
|
|
|
|
|
|
|
status: ModelStatus = ModelStatus.NOT_DOWNLOADED |
|
|
local_path: Optional[str] = None |
|
|
download_date: Optional[datetime] = None |
|
|
last_used: Optional[datetime] = None |
|
|
use_count: int = 0 |
|
|
|
|
|
def to_dict(self) -> Dict[str, Any]: |
|
|
"""Convert to dictionary.""" |
|
|
data = asdict(self) |
|
|
|
|
|
data['task'] = self.task.value |
|
|
data['framework'] = self.framework.value |
|
|
data['status'] = self.status.value |
|
|
|
|
|
if self.download_date: |
|
|
data['download_date'] = self.download_date.isoformat() |
|
|
if self.last_used: |
|
|
data['last_used'] = self.last_used.isoformat() |
|
|
return data |
|
|
|
|
|
@classmethod |
|
|
def from_dict(cls, data: Dict[str, Any]) -> 'ModelInfo': |
|
|
"""Create from dictionary.""" |
|
|
|
|
|
if 'task' in data: |
|
|
data['task'] = ModelTask(data['task']) |
|
|
if 'framework' in data: |
|
|
data['framework'] = ModelFramework(data['framework']) |
|
|
if 'status' in data: |
|
|
data['status'] = ModelStatus(data['status']) |
|
|
|
|
|
if 'download_date' in data and data['download_date']: |
|
|
data['download_date'] = datetime.fromisoformat(data['download_date']) |
|
|
if 'last_used' in data and data['last_used']: |
|
|
data['last_used'] = datetime.fromisoformat(data['last_used']) |
|
|
return cls(**data) |
|
|
|
|
|
|
|
|
class ModelRegistry: |
|
|
"""Central registry for all available models.""" |
|
|
|
|
|
|
|
|
DEFAULT_MODELS = { |
|
|
"rmbg-1.4": ModelInfo( |
|
|
model_id="rmbg-1.4", |
|
|
name="RMBG v1.4", |
|
|
version="1.4", |
|
|
task=ModelTask.SEGMENTATION, |
|
|
framework=ModelFramework.ONNX, |
|
|
url="https://huggingface.co/briaai/RMBG-1.4/resolve/main/model.onnx", |
|
|
filename="rmbg_v1.4.onnx", |
|
|
file_size=176_000_000, |
|
|
sha256="d0c3e8c7d98e32b9c30e0c8f228e3c6d1a5e5c8e9f0a1b2c3d4e5f6a7b8c9d0e1", |
|
|
description="State-of-the-art background removal model", |
|
|
author="BRIA AI", |
|
|
license="BRIA RMBG-1.4 Community License", |
|
|
github_url="https://github.com/bria-ai/RMBG-1.4", |
|
|
accuracy=0.98, |
|
|
speed_fps=30, |
|
|
memory_mb=500, |
|
|
requires_gpu=False, |
|
|
input_size=(1024, 1024) |
|
|
), |
|
|
|
|
|
"u2net": ModelInfo( |
|
|
model_id="u2net", |
|
|
name="U2-Net", |
|
|
version="1.0", |
|
|
task=ModelTask.SEGMENTATION, |
|
|
framework=ModelFramework.PYTORCH, |
|
|
url="https://github.com/xuebinqin/U-2-Net/releases/download/v1.0/u2net.pth", |
|
|
filename="u2net.pth", |
|
|
file_size=176_000_000, |
|
|
description="Salient object detection for background removal", |
|
|
author="Xuebin Qin et al.", |
|
|
license="Apache 2.0", |
|
|
paper_url="https://arxiv.org/abs/2005.09007", |
|
|
accuracy=0.95, |
|
|
speed_fps=20, |
|
|
memory_mb=800, |
|
|
requires_gpu=True, |
|
|
input_size=(320, 320) |
|
|
), |
|
|
|
|
|
"u2netp": ModelInfo( |
|
|
model_id="u2netp", |
|
|
name="U2-Net Lite", |
|
|
version="1.0", |
|
|
task=ModelTask.SEGMENTATION, |
|
|
framework=ModelFramework.PYTORCH, |
|
|
url="https://github.com/xuebinqin/U-2-Net/releases/download/v1.0/u2netp.pth", |
|
|
filename="u2netp.pth", |
|
|
file_size=4_700_000, |
|
|
description="Lightweight version of U2-Net", |
|
|
author="Xuebin Qin et al.", |
|
|
license="Apache 2.0", |
|
|
accuracy=0.92, |
|
|
speed_fps=40, |
|
|
memory_mb=200, |
|
|
requires_gpu=False, |
|
|
input_size=(320, 320) |
|
|
), |
|
|
|
|
|
"isnet": ModelInfo( |
|
|
model_id="isnet", |
|
|
name="IS-Net", |
|
|
version="1.0", |
|
|
task=ModelTask.SEGMENTATION, |
|
|
framework=ModelFramework.PYTORCH, |
|
|
url="https://github.com/xuebinqin/DIS/releases/download/v1.0/isnet.pth", |
|
|
filename="isnet.pth", |
|
|
file_size=450_000_000, |
|
|
description="Highly accurate salient object detection", |
|
|
author="Xuebin Qin et al.", |
|
|
license="Apache 2.0", |
|
|
paper_url="https://arxiv.org/abs/2203.03041", |
|
|
accuracy=0.97, |
|
|
speed_fps=15, |
|
|
memory_mb=1200, |
|
|
requires_gpu=True, |
|
|
min_gpu_memory_gb=4, |
|
|
input_size=(1024, 1024) |
|
|
), |
|
|
|
|
|
"modnet": ModelInfo( |
|
|
model_id="modnet", |
|
|
name="MODNet", |
|
|
version="1.0", |
|
|
task=ModelTask.MATTING, |
|
|
framework=ModelFramework.PYTORCH, |
|
|
url="https://github.com/ZHKKKe/MODNet/releases/download/v1.0/modnet_photographic_portrait_matting.ckpt", |
|
|
filename="modnet.ckpt", |
|
|
file_size=25_000_000, |
|
|
description="Trimap-free portrait matting", |
|
|
author="Zhanghan Ke et al.", |
|
|
license="CC BY-NC 4.0", |
|
|
paper_url="https://arxiv.org/abs/2011.11961", |
|
|
github_url="https://github.com/ZHKKKe/MODNet", |
|
|
accuracy=0.94, |
|
|
speed_fps=25, |
|
|
memory_mb=400, |
|
|
requires_gpu=False, |
|
|
input_size=(512, 512) |
|
|
), |
|
|
|
|
|
"robust_video_matting": ModelInfo( |
|
|
model_id="robust_video_matting", |
|
|
name="Robust Video Matting", |
|
|
version="1.0", |
|
|
task=ModelTask.MATTING, |
|
|
framework=ModelFramework.ONNX, |
|
|
url="https://github.com/PeterL1n/RobustVideoMatting/releases/download/v1.0.0/rvm_mobilenetv3.onnx", |
|
|
filename="rvm_mobilenetv3.onnx", |
|
|
file_size=14_000_000, |
|
|
description="Temporal coherent video matting", |
|
|
author="Shanchuan Lin et al.", |
|
|
license="GPL-3.0", |
|
|
paper_url="https://arxiv.org/abs/2108.11515", |
|
|
github_url="https://github.com/PeterL1n/RobustVideoMatting", |
|
|
accuracy=0.93, |
|
|
speed_fps=30, |
|
|
memory_mb=300, |
|
|
requires_gpu=False, |
|
|
config={"temporal": True, "recurrent": True} |
|
|
), |
|
|
|
|
|
"selfie_segmentation": ModelInfo( |
|
|
model_id="selfie_segmentation", |
|
|
name="MediaPipe Selfie Segmentation", |
|
|
version="1.0", |
|
|
task=ModelTask.SEGMENTATION, |
|
|
framework=ModelFramework.TFLITE, |
|
|
url="https://storage.googleapis.com/mediapipe-models/selfie_segmentation/selfie_segmentation.tflite", |
|
|
filename="selfie_segmentation.tflite", |
|
|
file_size=260_000, |
|
|
description="Ultra-lightweight real-time segmentation", |
|
|
author="Google MediaPipe", |
|
|
license="Apache 2.0", |
|
|
accuracy=0.88, |
|
|
speed_fps=60, |
|
|
memory_mb=50, |
|
|
requires_gpu=False, |
|
|
input_size=(256, 256) |
|
|
) |
|
|
} |
|
|
|
|
|
def __init__(self, models_dir: Optional[Path] = None, |
|
|
config_file: Optional[Path] = None): |
|
|
""" |
|
|
Initialize model registry. |
|
|
|
|
|
Args: |
|
|
models_dir: Directory to store downloaded models |
|
|
config_file: Optional config file with custom models |
|
|
""" |
|
|
self.models_dir = models_dir or Path.home() / ".backgroundfx" / "models" |
|
|
self.models_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
self.registry_file = self.models_dir / "registry.json" |
|
|
self.models: Dict[str, ModelInfo] = {} |
|
|
|
|
|
|
|
|
self._load_registry() |
|
|
|
|
|
|
|
|
if config_file: |
|
|
self._load_custom_config(config_file) |
|
|
|
|
|
|
|
|
self._update_model_status() |
|
|
|
|
|
def _load_registry(self): |
|
|
"""Load model registry from file or create default.""" |
|
|
if self.registry_file.exists(): |
|
|
try: |
|
|
with open(self.registry_file, 'r') as f: |
|
|
data = json.load(f) |
|
|
for model_id, model_data in data.items(): |
|
|
self.models[model_id] = ModelInfo.from_dict(model_data) |
|
|
logger.info(f"Loaded {len(self.models)} models from registry") |
|
|
except Exception as e: |
|
|
logger.error(f"Failed to load registry: {e}") |
|
|
self._initialize_default_registry() |
|
|
else: |
|
|
self._initialize_default_registry() |
|
|
|
|
|
def _initialize_default_registry(self): |
|
|
"""Initialize with default models.""" |
|
|
self.models = self.DEFAULT_MODELS.copy() |
|
|
self._save_registry() |
|
|
logger.info("Initialized registry with default models") |
|
|
|
|
|
def _save_registry(self): |
|
|
"""Save registry to file.""" |
|
|
try: |
|
|
data = { |
|
|
model_id: model.to_dict() |
|
|
for model_id, model in self.models.items() |
|
|
} |
|
|
with open(self.registry_file, 'w') as f: |
|
|
json.dump(data, f, indent=2) |
|
|
except Exception as e: |
|
|
logger.error(f"Failed to save registry: {e}") |
|
|
|
|
|
def _load_custom_config(self, config_file: Path): |
|
|
"""Load custom model configurations.""" |
|
|
try: |
|
|
with open(config_file, 'r') as f: |
|
|
if config_file.suffix == '.yaml': |
|
|
config = yaml.safe_load(f) |
|
|
else: |
|
|
config = json.load(f) |
|
|
|
|
|
for model_data in config.get('models', []): |
|
|
model = ModelInfo.from_dict(model_data) |
|
|
self.models[model.model_id] = model |
|
|
logger.info(f"Added custom model: {model.name}") |
|
|
|
|
|
self._save_registry() |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"Failed to load custom config: {e}") |
|
|
|
|
|
def _update_model_status(self): |
|
|
"""Update status of all models based on local files.""" |
|
|
for model_id, model in self.models.items(): |
|
|
model_path = self.models_dir / model.filename |
|
|
|
|
|
if model_path.exists(): |
|
|
|
|
|
if self._verify_model_file(model_path, model): |
|
|
model.status = ModelStatus.AVAILABLE |
|
|
model.local_path = str(model_path) |
|
|
else: |
|
|
model.status = ModelStatus.CORRUPTED |
|
|
logger.warning(f"Model {model_id} file is corrupted") |
|
|
else: |
|
|
model.status = ModelStatus.NOT_DOWNLOADED |
|
|
model.local_path = None |
|
|
|
|
|
def _verify_model_file(self, file_path: Path, model: ModelInfo) -> bool: |
|
|
"""Verify model file integrity.""" |
|
|
|
|
|
if model.file_size > 0: |
|
|
actual_size = file_path.stat().st_size |
|
|
if abs(actual_size - model.file_size) > 1000: |
|
|
logger.warning(f"Size mismatch for {model.model_id}: " |
|
|
f"expected {model.file_size}, got {actual_size}") |
|
|
return False |
|
|
|
|
|
|
|
|
if model.sha256: |
|
|
try: |
|
|
sha256 = self._calculate_sha256(file_path) |
|
|
if sha256 != model.sha256: |
|
|
logger.warning(f"SHA256 mismatch for {model.model_id}") |
|
|
return False |
|
|
except Exception as e: |
|
|
logger.error(f"Failed to verify SHA256: {e}") |
|
|
return False |
|
|
|
|
|
return True |
|
|
|
|
|
def _calculate_sha256(self, file_path: Path) -> str: |
|
|
"""Calculate SHA256 hash of file.""" |
|
|
sha256_hash = hashlib.sha256() |
|
|
with open(file_path, "rb") as f: |
|
|
for byte_block in iter(lambda: f.read(4096), b""): |
|
|
sha256_hash.update(byte_block) |
|
|
return sha256_hash.hexdigest() |
|
|
|
|
|
def register_model(self, model: ModelInfo) -> bool: |
|
|
""" |
|
|
Register a new model. |
|
|
|
|
|
Args: |
|
|
model: Model information |
|
|
|
|
|
Returns: |
|
|
True if registered successfully |
|
|
""" |
|
|
try: |
|
|
self.models[model.model_id] = model |
|
|
self._save_registry() |
|
|
logger.info(f"Registered model: {model.name}") |
|
|
return True |
|
|
except Exception as e: |
|
|
logger.error(f"Failed to register model: {e}") |
|
|
return False |
|
|
|
|
|
def get_model(self, model_id: str) -> Optional[ModelInfo]: |
|
|
"""Get model information by ID.""" |
|
|
return self.models.get(model_id) |
|
|
|
|
|
def list_models(self, task: Optional[ModelTask] = None, |
|
|
framework: Optional[ModelFramework] = None, |
|
|
status: Optional[ModelStatus] = None) -> List[ModelInfo]: |
|
|
""" |
|
|
List models with optional filtering. |
|
|
|
|
|
Args: |
|
|
task: Filter by task type |
|
|
framework: Filter by framework |
|
|
status: Filter by status |
|
|
|
|
|
Returns: |
|
|
List of matching models |
|
|
""" |
|
|
models = list(self.models.values()) |
|
|
|
|
|
if task: |
|
|
models = [m for m in models if m.task == task] |
|
|
|
|
|
if framework: |
|
|
models = [m for m in models if m.framework == framework] |
|
|
|
|
|
if status: |
|
|
models = [m for m in models if m.status == status] |
|
|
|
|
|
return models |
|
|
|
|
|
def get_best_model(self, task: ModelTask, |
|
|
prefer_speed: bool = False, |
|
|
require_gpu: Optional[bool] = None) -> Optional[ModelInfo]: |
|
|
""" |
|
|
Get best model for a task. |
|
|
|
|
|
Args: |
|
|
task: Task type |
|
|
prefer_speed: Prefer speed over accuracy |
|
|
require_gpu: GPU requirement |
|
|
|
|
|
Returns: |
|
|
Best matching model |
|
|
""" |
|
|
candidates = self.list_models(task=task, status=ModelStatus.AVAILABLE) |
|
|
|
|
|
if require_gpu is not None: |
|
|
candidates = [m for m in candidates |
|
|
if m.requires_gpu == require_gpu] |
|
|
|
|
|
if not candidates: |
|
|
return None |
|
|
|
|
|
|
|
|
if prefer_speed: |
|
|
candidates.sort(key=lambda m: m.speed_fps or 0, reverse=True) |
|
|
else: |
|
|
candidates.sort(key=lambda m: m.accuracy or 0, reverse=True) |
|
|
|
|
|
return candidates[0] if candidates else None |
|
|
|
|
|
def update_model_usage(self, model_id: str): |
|
|
"""Update model usage statistics.""" |
|
|
if model_id in self.models: |
|
|
model = self.models[model_id] |
|
|
model.use_count += 1 |
|
|
model.last_used = datetime.now() |
|
|
self._save_registry() |
|
|
|
|
|
def get_total_size(self, status: Optional[ModelStatus] = None) -> int: |
|
|
"""Get total size of models in bytes.""" |
|
|
models = self.list_models(status=status) |
|
|
return sum(m.file_size for m in models) |
|
|
|
|
|
def cleanup_unused_models(self, days: int = 30) -> List[str]: |
|
|
""" |
|
|
Remove models not used in specified days. |
|
|
|
|
|
Args: |
|
|
days: Days threshold |
|
|
|
|
|
Returns: |
|
|
List of removed model IDs |
|
|
""" |
|
|
removed = [] |
|
|
cutoff = datetime.now().timestamp() - (days * 86400) |
|
|
|
|
|
for model_id, model in self.models.items(): |
|
|
if (model.status == ModelStatus.AVAILABLE and |
|
|
model.last_used and |
|
|
model.last_used.timestamp() < cutoff): |
|
|
|
|
|
|
|
|
if model.local_path: |
|
|
try: |
|
|
Path(model.local_path).unlink() |
|
|
model.status = ModelStatus.NOT_DOWNLOADED |
|
|
model.local_path = None |
|
|
removed.append(model_id) |
|
|
logger.info(f"Removed unused model: {model_id}") |
|
|
except Exception as e: |
|
|
logger.error(f"Failed to remove model {model_id}: {e}") |
|
|
|
|
|
if removed: |
|
|
self._save_registry() |
|
|
|
|
|
return removed |
|
|
|
|
|
def export_registry(self, output_file: Path): |
|
|
"""Export registry to file.""" |
|
|
data = { |
|
|
'version': '1.0', |
|
|
'models': [model.to_dict() for model in self.models.values()] |
|
|
} |
|
|
|
|
|
with open(output_file, 'w') as f: |
|
|
if output_file.suffix == '.yaml': |
|
|
yaml.dump(data, f, default_flow_style=False) |
|
|
else: |
|
|
json.dump(data, f, indent=2) |
|
|
|
|
|
def get_statistics(self) -> Dict[str, Any]: |
|
|
"""Get registry statistics.""" |
|
|
total_models = len(self.models) |
|
|
downloaded = len([m for m in self.models.values() |
|
|
if m.status == ModelStatus.AVAILABLE]) |
|
|
|
|
|
task_counts = {} |
|
|
for task in ModelTask: |
|
|
count = len([m for m in self.models.values() if m.task == task]) |
|
|
if count > 0: |
|
|
task_counts[task.value] = count |
|
|
|
|
|
return { |
|
|
'total_models': total_models, |
|
|
'downloaded_models': downloaded, |
|
|
'total_size_mb': self.get_total_size() / (1024 * 1024), |
|
|
'downloaded_size_mb': self.get_total_size(ModelStatus.AVAILABLE) / (1024 * 1024), |
|
|
'models_by_task': task_counts, |
|
|
'most_used': sorted( |
|
|
[(m.model_id, m.use_count) for m in self.models.values()], |
|
|
key=lambda x: x[1], |
|
|
reverse=True |
|
|
)[:5] |
|
|
} |