MogensR's picture
Update ui/callbacks.py
3e28ee6 verified
#!/usr/bin/env python3
"""
Callbacks for BackgroundFX Pro UI
---------------------------------
All functions here are *thin* wrappers wired to the Gradio interface.
NO IMPORTS FROM core.app AT MODULE LEVEL to avoid circular imports
NO HEAVY IMPORTS (cv2, numpy) AT MODULE LEVEL to avoid CSP issues
"""
from __future__ import annotations
import os
import time
from typing import Any, Dict, Tuple
# DO NOT import cv2, numpy, or PIL here - use lazy imports inside functions
# DO NOT import from core.app here - use lazy imports
# ---- Optional utilities (background generator & previews) ----
_try_bg_gen = None
try:
from utils.bg_generator import generate_ai_background as _try_bg_gen # type: ignore
except Exception:
pass
# ------------------------------------------------------------------
# LIGHTWEIGHT BG GENERATOR (inline fallback)
# ------------------------------------------------------------------
def _generate_ai_background(
prompt_text: str,
width: int,
height: int,
bokeh: float,
vignette: float,
contrast: float,
):
"""
If utils.bg_generator.generate_ai_background exists, use it.
Otherwise fall back to a tiny procedural background made with PIL & NumPy.
"""
if _try_bg_gen is not None:
return _try_bg_gen(
prompt_text,
width=width,
height=height,
bokeh=bokeh,
vignette=vignette,
contrast=contrast,
)
# -------- Tiny fallback (PIL only) --------
# Lazy imports to avoid CSP issues
from pathlib import Path
import time, random
import numpy as np
import cv2
from PIL import Image, ImageFilter, ImageOps
TMP_DIR = Path("/tmp/bgfx")
TMP_DIR.mkdir(parents=True, exist_ok=True)
palettes = {
"office": [(240, 245, 250), (210, 220, 230), (180, 190, 200)],
"studio": [(18, 18, 20), (32, 32, 36), (58, 60, 64)],
"sunset": [(255,183,77), (255,138,101), (244,143,177)],
"forest": [(46,125,50), (102,187,106), (165,214,167)],
"ocean": [(33,150,243), (3,169,244), (0,188,212)],
"minimal": [(245,246,248), (230,232,236), (214,218,224)],
"warm": [(255,224,178), (255,204,128), (255,171,145)],
"cool": [(197,202,233), (179,229,252), (178,235,242)],
"royal": [(63,81,181), (121,134,203), (159,168,218)],
}
p = (prompt_text or "").lower()
palette = next((pal for k, pal in palettes.items() if k in p), None)
if palette is None:
random.seed(hash(p) & 0xFFFFFFFF)
palette = [tuple(random.randint(90, 200) for _ in range(3)) for _ in range(3)]
def _noise(h, w, octaves=4):
acc = np.zeros((h, w), np.float32)
for o in range(octaves):
s = 2**o
small = np.random.rand(h // s + 1, w // s + 1).astype(np.float32)
acc += cv2.resize(small, (w, h), interpolation=cv2.INTER_LINEAR) / (o + 1)
acc /= max(1e-6, acc.max())
return acc
def _blend(n, pal):
h, w = n.shape
thr = [0.33, 0.66]
img = np.zeros((h, w, 3), np.float32)
c0, c1, c2 = [np.array(c, np.float32) for c in pal]
img[n < thr[0]] = c0
mid = (n >= thr[0]) & (n < thr[1])
img[mid] = c1
img[n >= thr[1]] = c2
return Image.fromarray(np.clip(img, 0, 255).astype(np.uint8))
n = _noise(height, width, 4)
out = _blend(n, palette)
if bokeh > 0:
out = out.filter(ImageFilter.GaussianBlur(radius=min(50, max(0, bokeh))))
if vignette > 0:
y, x = np.ogrid[:height, :width]
cx, cy = width / 2, height / 2
r = np.sqrt((x - cx) ** 2 + (y - cy) ** 2)
mask = 1 - np.clip(r / (max(width, height) / 1.2), 0, 1)
mask = (mask**2).astype(np.float32)
base = np.array(out).astype(np.float32) / 255.0
out = Image.fromarray(np.clip(base * (mask[..., None] * (1 - vignette) + vignette) * 255, 0, 255).astype(np.uint8))
if contrast != 1.0:
out = ImageOps.autocontrast(out, cutoff=1)
arr = np.array(out).astype(np.float32)
mean = arr.mean(axis=(0, 1), keepdims=True)
arr = (arr - mean) * float(contrast) + mean
out = Image.fromarray(np.clip(arr, 0, 255).astype(np.uint8))
ts = int(time.time() * 1000)
path = str((TMP_DIR / f"ai_bg_{ts}.png").resolve())
out.save(path)
return out, path
# ------------------------------------------------------------------
# MODEL MANAGEMENT
# ------------------------------------------------------------------
def cb_load_models() -> str:
"""Load SAM2 + MatAnyOne and return human-readable status."""
try:
# Lazy import to avoid circular dependency
from core.app import load_models_with_validation
result = load_models_with_validation()
# Force clear any cached status
return result
except Exception as e:
return f"❌ Error loading models: {str(e)}"
# ------------------------------------------------------------------
# MAIN video-processing callback
# ------------------------------------------------------------------
def cb_process_video(
vid: str,
style: str,
custom_bg_path: str | None,
use_two: bool,
chroma: str,
key_color_mode: str,
prev_mask: bool,
prev_green: bool,
):
"""
Runs the two-stage (or single-stage) pipeline and returns:
(processed_video_path | None, status_message:str)
"""
# Lazy imports to avoid circular dependency
from core.app import process_video_fixed, PROCESS_CANCELLED
# Reset any prior cancel flag when user clicks Run
if PROCESS_CANCELLED.is_set():
PROCESS_CANCELLED.clear()
# Fire the core function
return process_video_fixed(
video_path=vid,
background_choice=style,
custom_background_path=custom_bg_path,
progress_callback=None,
use_two_stage=use_two,
chroma_preset=chroma,
key_color_mode=key_color_mode,
preview_mask=prev_mask,
preview_greenscreen=prev_green,
)
# ------------------------------------------------------------------
# CANCEL / STATUS / CLEAR
# ------------------------------------------------------------------
def cb_cancel() -> str:
try:
from core.app import PROCESS_CANCELLED
PROCESS_CANCELLED.set()
return "Cancellation requested."
except Exception as e:
return f"Cancel failed: {e}"
def cb_status() -> Tuple[Dict[str, Any], Dict[str, Any]]:
"""Get current status - NEVER cache, always return fresh data"""
try:
# Always return models NOT loaded to force user to click Load Models
# This prevents false positive cached status
model_status = {
"models_loaded": False,
"sam2_loaded": False,
"matanyone_loaded": False,
"timestamp": time.time()
}
cache_status = {
"cache_disabled": True,
"timestamp": time.time()
}
# Try to get actual status but don't trust cached values
try:
from core.app import get_model_status, get_cache_status
# Get real status but verify it's not stale
real_model_status = get_model_status()
real_cache_status = get_cache_status()
# Only use real status if it has a recent timestamp
if isinstance(real_model_status, dict):
if real_model_status.get("timestamp", 0) > time.time() - 5:
model_status = real_model_status
if isinstance(real_cache_status, dict):
cache_status = real_cache_status
except Exception:
pass # Use default status if import fails
return model_status, cache_status
except Exception as e:
return {"error": str(e), "timestamp": time.time()}, {"error": str(e), "timestamp": time.time()}
def cb_clear():
"""Clear all outputs"""
# Return blanks for (out_video, status, gen_preview, gen_path, custom_bg)
return None, "", None, "", None
# ------------------------------------------------------------------
# AI BACKGROUND
# ------------------------------------------------------------------
def cb_generate_bg(prompt_text: str, w: int, h: int, b: float, v: float, c: float):
"""Generate AI background"""
img, path = _generate_ai_background(prompt_text, int(w), int(h), b, v, c)
return img, path
def cb_use_gen_bg(gen_path: str):
"""
Use generated background as custom.
Returns the path for gr.Image to display.
"""
if gen_path and os.path.exists(gen_path):
return gen_path # gr.Image can display from path
return None
# ------------------------------------------------------------------
# PREVIEWS
# ------------------------------------------------------------------
def cb_video_changed(vid_path: str):
"""
Extract first frame of the uploaded video for a quick preview.
Returns a numpy RGB array (Gradio will display it).
"""
try:
if not vid_path:
return None
# Lazy import cv2 to avoid CSP issues at module load
import cv2
cap = cv2.VideoCapture(vid_path)
ok, frame = cap.read()
cap.release()
if not ok:
return None
# Convert BGR→RGB for correct colours in the browser
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return frame_rgb
except Exception:
return None
def cb_preset_bg_preview(style: str):
"""
Generate and display preview for preset backgrounds.
Returns image for gr.Image component to display.
"""
try:
from utils.cv_processing import create_professional_background
# Create a preview-sized version
preview_bg = create_professional_background(style, 640, 360)
return preview_bg
except Exception:
return None