MogensR's picture
Update utils/logger.py
01b7e60
#!/usr/bin/env python3
"""
Logging Management Module
========================
Professional logging system that integrates with existing LOGS/ folder
and provides structured, comprehensive logging for BackgroundFX Pro.
Features:
- Integration with existing LOGS/ folder
- Structured logging with different levels
- Performance tracking and metrics
- Error tracking and debugging
- Rotating log files
- Console and file output
Author: BackgroundFX Pro Team
License: MIT
"""
import os
import sys
import logging
import logging.handlers
from typing import Optional, Dict, Any
from datetime import datetime
from pathlib import Path
import json
import traceback
from functools import wraps
import time
from typing import Dict, List
class ColoredFormatter(logging.Formatter):
"""Custom formatter with colors for console output"""
# Color codes
COLORS = {
'DEBUG': '\033[36m', # Cyan
'INFO': '\033[32m', # Green
'WARNING': '\033[33m', # Yellow
'ERROR': '\033[31m', # Red
'CRITICAL': '\033[35m', # Magenta
'RESET': '\033[0m' # Reset
}
def format(self, record):
# Add color to levelname
if record.levelname in self.COLORS:
record.levelname = f"{self.COLORS[record.levelname]}{record.levelname}{self.COLORS['RESET']}"
return super().format(record)
class BackgroundFXLogger:
"""Main logger class for BackgroundFX Pro"""
def __init__(self,
name: str = "BackgroundFX",
logs_dir: str = "LOGS",
level: int = logging.INFO,
console_output: bool = True,
file_output: bool = True):
self.name = name
self.logs_dir = Path(logs_dir)
self.level = level
self.console_output = console_output
self.file_output = file_output
# Create logs directory if it doesn't exist
self.logs_dir.mkdir(exist_ok=True)
# Initialize logger
self.logger = logging.getLogger(name)
self.logger.setLevel(level)
# Clear existing handlers to avoid duplicates
self.logger.handlers.clear()
# Setup handlers
self._setup_handlers()
# Performance tracking
self.performance_data = {}
self.start_times = {}
def __getattr__(self, name):
"""
Delegate unknown attributes/methods to the underlying stdlib logger.
This makes BackgroundFXLogger behave like logging.Logger where needed.
"""
return getattr(self.logger, name)
def _setup_handlers(self):
"""Setup logging handlers for console and file output"""
# Console handler
if self.console_output:
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setLevel(self.level)
# Colored formatter for console
console_formatter = ColoredFormatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
console_handler.setFormatter(console_formatter)
self.logger.addHandler(console_handler)
# File handlers
if self.file_output:
# Main log file (rotating)
main_log_file = self.logs_dir / "backgroundfx.log"
file_handler = logging.handlers.RotatingFileHandler(
main_log_file,
maxBytes=10*1024*1024, # 10MB
backupCount=5,
encoding="utf-8"
)
file_handler.setLevel(self.level)
# Plain formatter for file
file_formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(funcName)s:%(lineno)d - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
file_handler.setFormatter(file_formatter)
self.logger.addHandler(file_handler)
# Error-only log file
error_log_file = self.logs_dir / "errors.log"
error_handler = logging.handlers.RotatingFileHandler(
error_log_file,
maxBytes=5*1024*1024, # 5MB
backupCount=3,
encoding="utf-8"
)
error_handler.setLevel(logging.ERROR)
error_handler.setFormatter(file_formatter)
self.logger.addHandler(error_handler)
# Performance log file (JSON format)
self.performance_log_file = self.logs_dir / "performance.json"
def debug(self, message: str, **kwargs):
"""Log debug message"""
self.logger.debug(message, extra=kwargs)
def info(self, message: str, **kwargs):
"""Log info message"""
self.logger.info(message, extra=kwargs)
def warning(self, message: str, **kwargs):
"""Log warning message"""
self.logger.warning(message, extra=kwargs)
def error(self, message: str, exception: Optional[Exception] = None, **kwargs):
"""Log error message with optional exception details"""
if exception:
message = f"{message} | Exception: {str(exception)}"
# Log full traceback to file
self.logger.error(f"{message}\n{traceback.format_exc()}", extra=kwargs)
else:
self.logger.error(message, extra=kwargs)
def critical(self, message: str, exception: Optional[Exception] = None, **kwargs):
"""Log critical message"""
if exception:
message = f"{message} | Exception: {str(exception)}"
self.logger.critical(f"{message}\n{traceback.format_exc()}", extra=kwargs)
else:
self.logger.critical(message, extra=kwargs)
def log_processing_step(self, step_name: str, details: Dict[str, Any] = None):
"""Log a processing step with details"""
details = details or {}
self.info(f"πŸ”„ Processing: {step_name}", **details)
def log_performance_metric(self, metric_name: str, value: float, unit: str = "", details: Dict = None):
"""Log performance metric"""
details = details or {}
message = f"πŸ“Š {metric_name}: {value:.3f}{unit}"
self.info(message, **details)
# Store for performance analysis
timestamp = datetime.now().isoformat()
self.performance_data[timestamp] = {
'metric': metric_name,
'value': value,
'unit': unit,
'details': details
}
# Save to performance log
self._save_performance_data()
def log_model_status(self, model_name: str, status: str, details: Dict = None):
"""Log model initialization/status"""
details = details or {}
if status == "initialized":
self.info(f"βœ… {model_name} initialized successfully", **details)
elif status == "failed":
self.error(f"❌ {model_name} initialization failed", **details)
elif status == "loading":
self.info(f"πŸ”„ Loading {model_name}...", **details)
else:
self.info(f"πŸ”§ {model_name}: {status}", **details)
def log_quality_metrics(self, frame_id: int, metrics: Dict[str, float]):
"""Log quality assessment metrics"""
metric_str = " | ".join([f"{k}: {v:.3f}" for k, v in metrics.items()])
self.info(f"πŸ“Š Frame {frame_id} Quality: {metric_str}")
# Store detailed metrics
timestamp = datetime.now().isoformat()
self.performance_data[f"{timestamp}_quality_{frame_id}"] = {
'type': 'quality_metrics',
'frame_id': frame_id,
'metrics': metrics
}
def log_video_processing(self, input_path: str, output_path: str,
frame_count: int, processing_time: float):
"""Log video processing completion"""
fps = frame_count / max(processing_time, 0.001)
self.info(
f"🎬 Video processed: {frame_count} frames in {processing_time:.1f}s ({fps:.1f} FPS)",
input_path=input_path,
output_path=output_path,
frame_count=frame_count,
processing_time=processing_time,
fps=fps
)
def start_timer(self, operation_name: str):
"""Start timing an operation"""
self.start_times[operation_name] = time.time()
self.debug(f"⏱️ Started timing: {operation_name}")
def end_timer(self, operation_name: str, log_result: bool = True) -> float:
"""End timing an operation and optionally log result"""
if operation_name not in self.start_times:
self.warning(f"Timer '{operation_name}' was not started")
return 0.0
elapsed = time.time() - self.start_times[operation_name]
del self.start_times[operation_name]
if log_result:
self.log_performance_metric(f"{operation_name}_time", elapsed, "s")
return elapsed
def _save_performance_data(self):
"""Save performance data to JSON file"""
try:
# Load existing data
existing_data = {}
if self.performance_log_file.exists():
with open(self.performance_log_file, 'r', encoding="utf-8") as f:
try:
existing_data = json.load(f)
except json.JSONDecodeError:
existing_data = {}
# Merge with new data
existing_data.update(self.performance_data)
# Keep only last 1000 entries to prevent file from growing too large
if len(existing_data) > 1000:
sorted_keys = sorted(existing_data.keys())
keep_keys = sorted_keys[-1000:]
existing_data = {k: existing_data[k] for k in keep_keys}
# Save updated data
with open(self.performance_log_file, 'w', encoding="utf-8") as f:
json.dump(existing_data, f, indent=2)
except Exception as e:
self.warning(f"Failed to save performance data: {e}")
def get_log_files(self) -> Dict[str, str]:
"""Get paths to all log files"""
return {
'main_log': str(self.logs_dir / "backgroundfx.log"),
'error_log': str(self.logs_dir / "errors.log"),
'performance_log': str(self.performance_log_file),
'logs_directory': str(self.logs_dir)
}
def get_recent_logs(self, lines: int = 50) -> Dict[str, List[str]]:
"""Get recent log entries"""
logs = {}
try:
# Main log
main_log_file = self.logs_dir / "backgroundfx.log"
if main_log_file.exists():
with open(main_log_file, 'r', encoding="utf-8") as f:
logs['main'] = f.readlines()[-lines:]
# Error log
error_log_file = self.logs_dir / "errors.log"
if error_log_file.exists():
with open(error_log_file, 'r', encoding="utf-8") as f:
logs['errors'] = f.readlines()[-lines:]
except Exception as e:
self.warning(f"Failed to read recent logs: {e}")
return logs
# Global logger instance
_global_logger: Optional[BackgroundFXLogger] = None
def setup_logging(logs_dir: str = "LOGS",
level: int = logging.INFO,
console_output: bool = True,
file_output: bool = True) -> BackgroundFXLogger:
"""Setup global logging configuration"""
global _global_logger
if _global_logger is None:
_global_logger = BackgroundFXLogger(
name="BackgroundFX",
logs_dir=logs_dir,
level=level,
console_output=console_output,
file_output=file_output
)
return _global_logger
# --- Backward-compat alias for legacy imports ---
def setup_logger(*args, **kwargs):
"""
Alias for old code: `from utils.logger import setup_logger`.
Behaves the same as setup_logging and returns a BackgroundFXLogger.
"""
return setup_logging(*args, **kwargs)
def get_logger(name: str = None) -> BackgroundFXLogger:
"""Get logger instance"""
if _global_logger is None:
setup_logging()
if name and name != "BackgroundFX":
# Create module-specific logger that inherits from main logger
module_logger = BackgroundFXLogger(
name=name,
logs_dir=_global_logger.logs_dir,
level=_global_logger.level,
console_output=False, # Use main logger for console
file_output=True
)
return module_logger
return _global_logger
def log_function_call(logger: BackgroundFXLogger = None):
"""Decorator to log function calls with timing"""
if logger is None:
logger = get_logger()
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
func_name = f"{func.__module__}.{func.__name__}"
logger.debug(f"πŸ”§ Calling: {func_name}")
logger.start_timer(func_name)
try:
result = func(*args, **kwargs)
elapsed = logger.end_timer(func_name, log_result=False)
logger.debug(f"βœ… Completed: {func_name} ({elapsed:.3f}s)")
return result
except Exception as e:
elapsed = logger.end_timer(func_name, log_result=False)
logger.error(f"❌ Failed: {func_name} ({elapsed:.3f}s)", exception=e)
raise
return wrapper
return decorator
def log_processing_pipeline():
"""Decorator for logging processing pipeline steps"""
logger = get_logger()
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
step_name = func.__name__.replace('_', ' ').title()
logger.log_processing_step(step_name)
try:
result = func(*args, **kwargs)
logger.info(f"βœ… {step_name} completed successfully")
return result
except Exception as e:
logger.error(f"❌ {step_name} failed", exception=e)
raise
return wrapper
return decorator
# Convenience functions
def log_info(message: str, **kwargs):
"""Quick info logging"""
get_logger().info(message, **kwargs)
def log_error(message: str, exception: Exception = None, **kwargs):
"""Quick error logging"""
get_logger().error(message, exception=exception, **kwargs)
def log_warning(message: str, **kwargs):
"""Quick warning logging"""
get_logger().warning(message, **kwargs)
def log_debug(message: str, **kwargs):
"""Quick debug logging"""
get_logger().debug(message, **kwargs)
# Initialize logging on module import
if _global_logger is None:
try:
setup_logging()
log_info("βœ… Logging system initialized")
except Exception as e:
print(f"⚠️ Failed to initialize logging: {e}")
__all__ = [
"BackgroundFXLogger",
"setup_logging",
"setup_logger", # alias for legacy code
"get_logger",
"log_function_call",
"log_processing_pipeline",
"log_info",
"log_error",
"log_warning",
"log_debug",
]