Update models/loaders/matanyone_loader.py
Browse files
models/loaders/matanyone_loader.py
CHANGED
|
@@ -87,20 +87,52 @@ def _patch_processor(self, processor):
|
|
| 87 |
"""
|
| 88 |
Patch the MatAnyone processor to handle device placement and tensor formats correctly
|
| 89 |
"""
|
| 90 |
-
original_step = None
|
| 91 |
-
original_process = None
|
| 92 |
-
|
| 93 |
-
if hasattr(processor, 'step'):
|
| 94 |
-
original_step = processor.step
|
| 95 |
-
if hasattr(processor, 'process'):
|
| 96 |
-
original_process = processor.process
|
| 97 |
|
| 98 |
device = self.device
|
| 99 |
|
| 100 |
-
def
|
| 101 |
-
"""
|
| 102 |
try:
|
| 103 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
if isinstance(image, np.ndarray):
|
| 105 |
image = torch.from_numpy(image).to(device)
|
| 106 |
elif isinstance(image, torch.Tensor):
|
|
@@ -111,61 +143,81 @@ def safe_step(image, mask, idx_mask=False, **kwargs):
|
|
| 111 |
elif isinstance(mask, torch.Tensor):
|
| 112 |
mask = mask.to(device)
|
| 113 |
|
| 114 |
-
#
|
| 115 |
-
if image.dim() ==
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
-
#
|
| 124 |
if mask.dim() == 2:
|
| 125 |
-
mask = mask.unsqueeze(0) # Add channel
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
-
# Ensure float
|
| 128 |
if image.dtype != torch.float32:
|
| 129 |
image = image.float()
|
| 130 |
if not idx_mask and mask.dtype != torch.float32:
|
| 131 |
mask = mask.float()
|
| 132 |
|
| 133 |
-
# Normalize if needed
|
| 134 |
if image.max() > 1.0:
|
| 135 |
image = image / 255.0
|
| 136 |
if not idx_mask and mask.max() > 1.0:
|
| 137 |
mask = mask / 255.0
|
| 138 |
|
| 139 |
-
# Call original method
|
| 140 |
if original_step:
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
-
except Exception as e:
|
| 147 |
-
logger.error(f"MatAnyone step failed: {e}")
|
| 148 |
-
logger.debug(traceback.format_exc())
|
| 149 |
-
# Return input mask as fallback
|
| 150 |
return mask
|
| 151 |
-
|
| 152 |
-
def safe_process(image, mask, **kwargs):
|
| 153 |
-
"""Wrapped process function with proper device handling"""
|
| 154 |
-
try:
|
| 155 |
-
# Use safe_step for processing
|
| 156 |
-
return safe_step(image, mask, idx_mask=False, **kwargs)
|
| 157 |
except Exception as e:
|
| 158 |
-
logger.error(f"MatAnyone
|
| 159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
-
# Apply patches
|
| 162 |
if hasattr(processor, 'step'):
|
| 163 |
-
processor.step =
|
| 164 |
-
logger.info("Patched MatAnyone step method
|
| 165 |
|
| 166 |
if hasattr(processor, 'process'):
|
| 167 |
-
processor.process =
|
| 168 |
-
logger.info("Patched MatAnyone process method
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
def _load_fallback(self) -> Optional[Any]:
|
| 171 |
"""Create fallback processor for testing"""
|
|
|
|
| 87 |
"""
|
| 88 |
Patch the MatAnyone processor to handle device placement and tensor formats correctly
|
| 89 |
"""
|
| 90 |
+
original_step = getattr(processor, 'step', None)
|
| 91 |
+
original_process = getattr(processor, 'process', None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
device = self.device
|
| 94 |
|
| 95 |
+
def safe_wrapper(*args, **kwargs):
|
| 96 |
+
"""Universal wrapper that handles both step and process calls"""
|
| 97 |
try:
|
| 98 |
+
# Handle different calling patterns
|
| 99 |
+
# Pattern 1: step(image, mask, idx_mask=False)
|
| 100 |
+
# Pattern 2: process(image, mask)
|
| 101 |
+
# Pattern 3: Called with just args
|
| 102 |
+
# Pattern 4: Called with kwargs
|
| 103 |
+
|
| 104 |
+
image = None
|
| 105 |
+
mask = None
|
| 106 |
+
idx_mask = kwargs.get('idx_mask', False)
|
| 107 |
+
|
| 108 |
+
# Extract image and mask
|
| 109 |
+
if 'image' in kwargs and 'mask' in kwargs:
|
| 110 |
+
image = kwargs['image']
|
| 111 |
+
mask = kwargs['mask']
|
| 112 |
+
elif len(args) >= 2:
|
| 113 |
+
image = args[0]
|
| 114 |
+
mask = args[1]
|
| 115 |
+
if len(args) > 2:
|
| 116 |
+
idx_mask = args[2]
|
| 117 |
+
elif len(args) == 1:
|
| 118 |
+
# Might be called with just mask for refinement
|
| 119 |
+
mask = args[0]
|
| 120 |
+
# Create dummy image if needed
|
| 121 |
+
if isinstance(mask, np.ndarray):
|
| 122 |
+
h, w = mask.shape[:2] if mask.ndim >= 2 else (512, 512)
|
| 123 |
+
image = np.zeros((h, w, 3), dtype=np.uint8)
|
| 124 |
+
elif isinstance(mask, torch.Tensor):
|
| 125 |
+
h, w = mask.shape[-2:] if mask.dim() >= 2 else (512, 512)
|
| 126 |
+
image = torch.zeros((h, w, 3), dtype=torch.uint8)
|
| 127 |
+
|
| 128 |
+
if image is None or mask is None:
|
| 129 |
+
logger.error(f"MatAnyone called with invalid args: {len(args)} args, kwargs: {kwargs.keys()}")
|
| 130 |
+
# Return something safe
|
| 131 |
+
if mask is not None:
|
| 132 |
+
return mask
|
| 133 |
+
return np.ones((512, 512), dtype=np.float32) * 0.5
|
| 134 |
+
|
| 135 |
+
# Convert to tensors on correct device
|
| 136 |
if isinstance(image, np.ndarray):
|
| 137 |
image = torch.from_numpy(image).to(device)
|
| 138 |
elif isinstance(image, torch.Tensor):
|
|
|
|
| 143 |
elif isinstance(mask, torch.Tensor):
|
| 144 |
mask = mask.to(device)
|
| 145 |
|
| 146 |
+
# Fix image format (ensure CHW or NCHW)
|
| 147 |
+
if image.dim() == 2: # Grayscale HW
|
| 148 |
+
image = image.unsqueeze(0) # CHW
|
| 149 |
+
elif image.dim() == 3:
|
| 150 |
+
# Check if HWC or CHW
|
| 151 |
+
if image.shape[-1] in [1, 3, 4]: # HWC
|
| 152 |
+
image = image.permute(2, 0, 1) # CHW
|
| 153 |
+
# Add batch if needed
|
| 154 |
+
if image.shape[0] in [1, 3, 4]: # CHW
|
| 155 |
+
image = image.unsqueeze(0) # NCHW
|
| 156 |
+
elif image.dim() == 4:
|
| 157 |
+
# Already NCHW, ensure correct channel position
|
| 158 |
+
if image.shape[-1] in [1, 3, 4]: # NHWC
|
| 159 |
+
image = image.permute(0, 3, 1, 2) # NCHW
|
| 160 |
|
| 161 |
+
# Fix mask format
|
| 162 |
if mask.dim() == 2:
|
| 163 |
+
mask = mask.unsqueeze(0) # Add channel: CHW
|
| 164 |
+
elif mask.dim() == 3:
|
| 165 |
+
if mask.shape[0] > 4: # Likely HWC
|
| 166 |
+
mask = mask.permute(2, 0, 1) # CHW
|
| 167 |
|
| 168 |
+
# Ensure float and normalized
|
| 169 |
if image.dtype != torch.float32:
|
| 170 |
image = image.float()
|
| 171 |
if not idx_mask and mask.dtype != torch.float32:
|
| 172 |
mask = mask.float()
|
| 173 |
|
|
|
|
| 174 |
if image.max() > 1.0:
|
| 175 |
image = image / 255.0
|
| 176 |
if not idx_mask and mask.max() > 1.0:
|
| 177 |
mask = mask / 255.0
|
| 178 |
|
| 179 |
+
# Call original method if it exists
|
| 180 |
if original_step:
|
| 181 |
+
try:
|
| 182 |
+
result = original_step(image, mask, idx_mask=idx_mask)
|
| 183 |
+
# Convert result back to numpy if needed
|
| 184 |
+
if isinstance(result, torch.Tensor):
|
| 185 |
+
result = result.cpu().numpy()
|
| 186 |
+
return result
|
| 187 |
+
except Exception as e:
|
| 188 |
+
logger.error(f"MatAnyone original step failed: {e}")
|
| 189 |
+
|
| 190 |
+
# Fallback: return slightly processed mask
|
| 191 |
+
if isinstance(mask, torch.Tensor):
|
| 192 |
+
# Apply slight smoothing
|
| 193 |
+
import torch.nn.functional as F
|
| 194 |
+
mask = F.avg_pool2d(mask.unsqueeze(0), 3, stride=1, padding=1)
|
| 195 |
+
mask = mask.squeeze(0).cpu().numpy()
|
| 196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
return mask
|
| 198 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
except Exception as e:
|
| 200 |
+
logger.error(f"MatAnyone safe_wrapper failed: {e}")
|
| 201 |
+
import traceback
|
| 202 |
+
logger.debug(traceback.format_exc())
|
| 203 |
+
# Return safe fallback
|
| 204 |
+
if 'mask' in locals() and mask is not None:
|
| 205 |
+
if isinstance(mask, torch.Tensor):
|
| 206 |
+
return mask.cpu().numpy()
|
| 207 |
+
return mask
|
| 208 |
+
return np.ones((512, 512), dtype=np.float32) * 0.5
|
| 209 |
|
| 210 |
+
# Apply patches to both methods
|
| 211 |
if hasattr(processor, 'step'):
|
| 212 |
+
processor.step = safe_wrapper
|
| 213 |
+
logger.info("Patched MatAnyone step method")
|
| 214 |
|
| 215 |
if hasattr(processor, 'process'):
|
| 216 |
+
processor.process = safe_wrapper
|
| 217 |
+
logger.info("Patched MatAnyone process method")
|
| 218 |
+
|
| 219 |
+
# Also add a direct call method
|
| 220 |
+
processor.__call__ = safe_wrapper
|
| 221 |
|
| 222 |
def _load_fallback(self) -> Optional[Any]:
|
| 223 |
"""Create fallback processor for testing"""
|