Update Dockerfile
Browse files- Dockerfile +579 -50
Dockerfile
CHANGED
|
@@ -1,50 +1,579 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
High-Quality Video Background Replacement
|
| 4 |
+
Upload video β Choose professional background β Replace with cinema quality
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import sys
|
| 9 |
+
import tempfile
|
| 10 |
+
import cv2
|
| 11 |
+
import numpy as np
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
import gradio as gr
|
| 14 |
+
import torch
|
| 15 |
+
import requests
|
| 16 |
+
from PIL import Image, ImageDraw
|
| 17 |
+
import json
|
| 18 |
+
|
| 19 |
+
# Suppress warnings and optimize for quality
|
| 20 |
+
import warnings
|
| 21 |
+
warnings.filterwarnings("ignore")
|
| 22 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:1024'
|
| 23 |
+
os.environ['CUDA_LAUNCH_BLOCKING'] = '0'
|
| 24 |
+
|
| 25 |
+
# Global variables for models
|
| 26 |
+
sam2_predictor = None
|
| 27 |
+
matanyone_model = None
|
| 28 |
+
models_loaded = False
|
| 29 |
+
|
| 30 |
+
# Professional background templates
|
| 31 |
+
PROFESSIONAL_BACKGROUNDS = {
|
| 32 |
+
"office_modern": {
|
| 33 |
+
"name": "Modern Office",
|
| 34 |
+
"type": "gradient",
|
| 35 |
+
"colors": ["#f8f9fa", "#e9ecef", "#dee2e6"],
|
| 36 |
+
"direction": "diagonal"
|
| 37 |
+
},
|
| 38 |
+
"office_executive": {
|
| 39 |
+
"name": "Executive Office",
|
| 40 |
+
"type": "gradient",
|
| 41 |
+
"colors": ["#2c3e50", "#34495e", "#5d6d7e"],
|
| 42 |
+
"direction": "vertical"
|
| 43 |
+
},
|
| 44 |
+
"studio_blue": {
|
| 45 |
+
"name": "Professional Blue",
|
| 46 |
+
"type": "gradient",
|
| 47 |
+
"colors": ["#1e3c72", "#2a5298", "#3498db"],
|
| 48 |
+
"direction": "radial"
|
| 49 |
+
},
|
| 50 |
+
"studio_green": {
|
| 51 |
+
"name": "Broadcast Green",
|
| 52 |
+
"type": "color",
|
| 53 |
+
"colors": ["#00b894"],
|
| 54 |
+
"chroma_key": True
|
| 55 |
+
},
|
| 56 |
+
"conference": {
|
| 57 |
+
"name": "Conference Room",
|
| 58 |
+
"type": "gradient",
|
| 59 |
+
"colors": ["#74b9ff", "#0984e3", "#6c5ce7"],
|
| 60 |
+
"direction": "horizontal"
|
| 61 |
+
},
|
| 62 |
+
"minimalist": {
|
| 63 |
+
"name": "Minimalist White",
|
| 64 |
+
"type": "gradient",
|
| 65 |
+
"colors": ["#ffffff", "#f1f2f6", "#ddd"],
|
| 66 |
+
"direction": "soft_radial"
|
| 67 |
+
},
|
| 68 |
+
"warm_gradient": {
|
| 69 |
+
"name": "Warm Sunset",
|
| 70 |
+
"type": "gradient",
|
| 71 |
+
"colors": ["#ff7675", "#fd79a8", "#fdcb6e"],
|
| 72 |
+
"direction": "diagonal"
|
| 73 |
+
},
|
| 74 |
+
"cool_gradient": {
|
| 75 |
+
"name": "Cool Ocean",
|
| 76 |
+
"type": "gradient",
|
| 77 |
+
"colors": ["#74b9ff", "#0984e3", "#00cec9"],
|
| 78 |
+
"direction": "vertical"
|
| 79 |
+
},
|
| 80 |
+
"corporate": {
|
| 81 |
+
"name": "Corporate Navy",
|
| 82 |
+
"type": "gradient",
|
| 83 |
+
"colors": ["#2d3436", "#636e72", "#74b9ff"],
|
| 84 |
+
"direction": "radial"
|
| 85 |
+
},
|
| 86 |
+
"creative": {
|
| 87 |
+
"name": "Creative Purple",
|
| 88 |
+
"type": "gradient",
|
| 89 |
+
"colors": ["#6c5ce7", "#a29bfe", "#fd79a8"],
|
| 90 |
+
"direction": "diagonal"
|
| 91 |
+
}
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
def download_and_setup_models():
|
| 95 |
+
"""Download and setup SAM2 and MatAnyone models with quality optimizations"""
|
| 96 |
+
global sam2_predictor, matanyone_model, models_loaded
|
| 97 |
+
|
| 98 |
+
if models_loaded:
|
| 99 |
+
return "β
High-quality models already loaded"
|
| 100 |
+
|
| 101 |
+
try:
|
| 102 |
+
# Download SAM2 if needed
|
| 103 |
+
sam2_checkpoint = "/tmp/sam2_hiera_large.pt"
|
| 104 |
+
if not os.path.exists(sam2_checkpoint):
|
| 105 |
+
print("π₯ Downloading SAM2 large model for maximum quality...")
|
| 106 |
+
url = "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_large.pt"
|
| 107 |
+
response = requests.get(url, stream=True)
|
| 108 |
+
total_size = int(response.headers.get('content-length', 0))
|
| 109 |
+
downloaded = 0
|
| 110 |
+
|
| 111 |
+
with open(sam2_checkpoint, 'wb') as f:
|
| 112 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 113 |
+
f.write(chunk)
|
| 114 |
+
downloaded += len(chunk)
|
| 115 |
+
if total_size > 0:
|
| 116 |
+
percent = (downloaded / total_size) * 100
|
| 117 |
+
print(f"Download progress: {percent:.1f}%")
|
| 118 |
+
|
| 119 |
+
# Setup SAM2 with quality settings
|
| 120 |
+
sys.path.append('/tmp/segment-anything-2')
|
| 121 |
+
from sam2.build_sam import build_sam2
|
| 122 |
+
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 123 |
+
|
| 124 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 125 |
+
print(f"π Loading SAM2 on {device} for maximum quality...")
|
| 126 |
+
|
| 127 |
+
sam2_model = build_sam2("sam2_hiera_large.yaml", sam2_checkpoint, device=device)
|
| 128 |
+
sam2_predictor = SAM2ImagePredictor(sam2_model)
|
| 129 |
+
|
| 130 |
+
# Setup MatAnyone with quality optimizations
|
| 131 |
+
sys.path.append('/tmp/MatAnyone')
|
| 132 |
+
from inference import MatAnyoneInference
|
| 133 |
+
|
| 134 |
+
print("π¨ Loading MatAnyone for cinema-quality matting...")
|
| 135 |
+
matanyone_model = MatAnyoneInference()
|
| 136 |
+
|
| 137 |
+
models_loaded = True
|
| 138 |
+
gpu_info = f" (GPU: {torch.cuda.get_device_name(0)})" if torch.cuda.is_available() else " (CPU)"
|
| 139 |
+
return f"β
High-quality models loaded successfully!{gpu_info}"
|
| 140 |
+
|
| 141 |
+
except Exception as e:
|
| 142 |
+
return f"β Error loading models: {e}"
|
| 143 |
+
|
| 144 |
+
def segment_person_hq(image):
|
| 145 |
+
"""High-quality person segmentation using SAM2"""
|
| 146 |
+
# Set image with quality optimizations
|
| 147 |
+
sam2_predictor.set_image(image)
|
| 148 |
+
|
| 149 |
+
h, w = image.shape[:2]
|
| 150 |
+
|
| 151 |
+
# Use multiple points for better segmentation
|
| 152 |
+
points = np.array([
|
| 153 |
+
[w//2, h//2], # Center
|
| 154 |
+
[w//2, h//3], # Upper body
|
| 155 |
+
[w//2, 2*h//3], # Lower body
|
| 156 |
+
[w//3, h//2], # Left side
|
| 157 |
+
[2*w//3, h//2], # Right side
|
| 158 |
+
])
|
| 159 |
+
labels = np.array([1, 1, 1, 1, 1]) # All positive points
|
| 160 |
+
|
| 161 |
+
# Predict with high quality settings
|
| 162 |
+
masks, scores, _ = sam2_predictor.predict(
|
| 163 |
+
point_coords=points,
|
| 164 |
+
point_labels=labels,
|
| 165 |
+
multimask_output=True
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
# Select best mask and apply smoothing
|
| 169 |
+
best_mask = masks[np.argmax(scores)]
|
| 170 |
+
|
| 171 |
+
# Smooth mask edges for better quality
|
| 172 |
+
kernel = np.ones((3,3), np.uint8)
|
| 173 |
+
best_mask = cv2.morphologyEx(best_mask.astype(np.uint8), cv2.MORPH_CLOSE, kernel)
|
| 174 |
+
best_mask = cv2.GaussianBlur(best_mask.astype(np.float32), (3,3), 1.0)
|
| 175 |
+
|
| 176 |
+
return (best_mask * 255).astype(np.uint8)
|
| 177 |
+
|
| 178 |
+
def refine_mask_hq(image, mask):
|
| 179 |
+
"""Cinema-quality mask refinement using MatAnyone"""
|
| 180 |
+
# Apply edge-preserving filtering before MatAnyone
|
| 181 |
+
image_filtered = cv2.bilateralFilter(image, 9, 75, 75)
|
| 182 |
+
|
| 183 |
+
# Use MatAnyone for professional matting
|
| 184 |
+
refined_mask = matanyone_model.infer(image_filtered, mask)
|
| 185 |
+
|
| 186 |
+
# Post-process for smooth edges
|
| 187 |
+
refined_mask = cv2.medianBlur(refined_mask, 3)
|
| 188 |
+
|
| 189 |
+
return refined_mask
|
| 190 |
+
|
| 191 |
+
def create_professional_background(bg_config, width, height):
|
| 192 |
+
"""Create professional background based on configuration"""
|
| 193 |
+
if bg_config["type"] == "color":
|
| 194 |
+
# Solid color
|
| 195 |
+
color_hex = bg_config["colors"][0].lstrip('#')
|
| 196 |
+
color_rgb = tuple(int(color_hex[i:i+2], 16) for i in (0, 2, 4))
|
| 197 |
+
color_bgr = color_rgb[::-1] # Convert to BGR
|
| 198 |
+
background = np.full((height, width, 3), color_bgr, dtype=np.uint8)
|
| 199 |
+
|
| 200 |
+
elif bg_config["type"] == "gradient":
|
| 201 |
+
background = create_gradient_background(bg_config, width, height)
|
| 202 |
+
|
| 203 |
+
return background
|
| 204 |
+
|
| 205 |
+
def create_gradient_background(bg_config, width, height):
|
| 206 |
+
"""Create high-quality gradient backgrounds"""
|
| 207 |
+
colors = bg_config["colors"]
|
| 208 |
+
direction = bg_config.get("direction", "vertical")
|
| 209 |
+
|
| 210 |
+
# Convert hex colors to RGB
|
| 211 |
+
rgb_colors = []
|
| 212 |
+
for color_hex in colors:
|
| 213 |
+
color_hex = color_hex.lstrip('#')
|
| 214 |
+
rgb = tuple(int(color_hex[i:i+2], 16) for i in (0, 2, 4))
|
| 215 |
+
rgb_colors.append(rgb)
|
| 216 |
+
|
| 217 |
+
# Create PIL image for high-quality gradients
|
| 218 |
+
pil_img = Image.new('RGB', (width, height))
|
| 219 |
+
draw = ImageDraw.Draw(pil_img)
|
| 220 |
+
|
| 221 |
+
if direction == "vertical":
|
| 222 |
+
# Vertical gradient
|
| 223 |
+
for y in range(height):
|
| 224 |
+
# Interpolate between colors
|
| 225 |
+
progress = y / height
|
| 226 |
+
if len(rgb_colors) == 2:
|
| 227 |
+
r = int(rgb_colors[0][0] + (rgb_colors[1][0] - rgb_colors[0][0]) * progress)
|
| 228 |
+
g = int(rgb_colors[0][1] + (rgb_colors[1][1] - rgb_colors[0][1]) * progress)
|
| 229 |
+
b = int(rgb_colors[0][2] + (rgb_colors[1][2] - rgb_colors[0][2]) * progress)
|
| 230 |
+
else:
|
| 231 |
+
# Multi-color gradient
|
| 232 |
+
segment = progress * (len(rgb_colors) - 1)
|
| 233 |
+
idx = int(segment)
|
| 234 |
+
local_progress = segment - idx
|
| 235 |
+
|
| 236 |
+
if idx >= len(rgb_colors) - 1:
|
| 237 |
+
r, g, b = rgb_colors[-1]
|
| 238 |
+
else:
|
| 239 |
+
c1, c2 = rgb_colors[idx], rgb_colors[idx + 1]
|
| 240 |
+
r = int(c1[0] + (c2[0] - c1[0]) * local_progress)
|
| 241 |
+
g = int(c1[1] + (c2[1] - c1[1]) * local_progress)
|
| 242 |
+
b = int(c1[2] + (c2[2] - c1[2]) * local_progress)
|
| 243 |
+
|
| 244 |
+
draw.line([(0, y), (width, y)], fill=(r, g, b))
|
| 245 |
+
|
| 246 |
+
elif direction == "horizontal":
|
| 247 |
+
# Horizontal gradient
|
| 248 |
+
for x in range(width):
|
| 249 |
+
progress = x / width
|
| 250 |
+
if len(rgb_colors) == 2:
|
| 251 |
+
r = int(rgb_colors[0][0] + (rgb_colors[1][0] - rgb_colors[0][0]) * progress)
|
| 252 |
+
g = int(rgb_colors[0][1] + (rgb_colors[1][1] - rgb_colors[0][1]) * progress)
|
| 253 |
+
b = int(rgb_colors[0][2] + (rgb_colors[1][2] - rgb_colors[0][2]) * progress)
|
| 254 |
+
else:
|
| 255 |
+
segment = progress * (len(rgb_colors) - 1)
|
| 256 |
+
idx = int(segment)
|
| 257 |
+
local_progress = segment - idx
|
| 258 |
+
|
| 259 |
+
if idx >= len(rgb_colors) - 1:
|
| 260 |
+
r, g, b = rgb_colors[-1]
|
| 261 |
+
else:
|
| 262 |
+
c1, c2 = rgb_colors[idx], rgb_colors[idx + 1]
|
| 263 |
+
r = int(c1[0] + (c2[0] - c1[0]) * local_progress)
|
| 264 |
+
g = int(c1[1] + (c2[1] - c1[1]) * local_progress)
|
| 265 |
+
b = int(c1[2] + (c2[2] - c1[2]) * local_progress)
|
| 266 |
+
|
| 267 |
+
draw.line([(x, 0), (x, height)], fill=(r, g, b))
|
| 268 |
+
|
| 269 |
+
elif direction == "diagonal":
|
| 270 |
+
# Diagonal gradient
|
| 271 |
+
for y in range(height):
|
| 272 |
+
for x in range(width):
|
| 273 |
+
progress = (x + y) / (width + height)
|
| 274 |
+
progress = min(1.0, progress)
|
| 275 |
+
|
| 276 |
+
if len(rgb_colors) == 2:
|
| 277 |
+
r = int(rgb_colors[0][0] + (rgb_colors[1][0] - rgb_colors[0][0]) * progress)
|
| 278 |
+
g = int(rgb_colors[0][1] + (rgb_colors[1][1] - rgb_colors[0][1]) * progress)
|
| 279 |
+
b = int(rgb_colors[0][2] + (rgb_colors[1][2] - rgb_colors[0][2]) * progress)
|
| 280 |
+
else:
|
| 281 |
+
segment = progress * (len(rgb_colors) - 1)
|
| 282 |
+
idx = int(segment)
|
| 283 |
+
local_progress = segment - idx
|
| 284 |
+
|
| 285 |
+
if idx >= len(rgb_colors) - 1:
|
| 286 |
+
r, g, b = rgb_colors[-1]
|
| 287 |
+
else:
|
| 288 |
+
c1, c2 = rgb_colors[idx], rgb_colors[idx + 1]
|
| 289 |
+
r = int(c1[0] + (c2[0] - c1[0]) * local_progress)
|
| 290 |
+
g = int(c1[1] + (c2[1] - c1[1]) * local_progress)
|
| 291 |
+
b = int(c1[2] + (c2[2] - c1[2]) * local_progress)
|
| 292 |
+
|
| 293 |
+
pil_img.putpixel((x, y), (r, g, b))
|
| 294 |
+
|
| 295 |
+
elif direction in ["radial", "soft_radial"]:
|
| 296 |
+
# Radial gradient
|
| 297 |
+
center_x, center_y = width // 2, height // 2
|
| 298 |
+
max_distance = np.sqrt(center_x**2 + center_y**2)
|
| 299 |
+
|
| 300 |
+
for y in range(height):
|
| 301 |
+
for x in range(width):
|
| 302 |
+
distance = np.sqrt((x - center_x)**2 + (y - center_y)**2)
|
| 303 |
+
progress = distance / max_distance
|
| 304 |
+
progress = min(1.0, progress)
|
| 305 |
+
|
| 306 |
+
if direction == "soft_radial":
|
| 307 |
+
progress = progress**0.7 # Softer falloff
|
| 308 |
+
|
| 309 |
+
if len(rgb_colors) == 2:
|
| 310 |
+
r = int(rgb_colors[0][0] + (rgb_colors[1][0] - rgb_colors[0][0]) * progress)
|
| 311 |
+
g = int(rgb_colors[0][1] + (rgb_colors[1][1] - rgb_colors[0][1]) * progress)
|
| 312 |
+
b = int(rgb_colors[0][2] + (rgb_colors[1][2] - rgb_colors[0][2]) * progress)
|
| 313 |
+
else:
|
| 314 |
+
segment = progress * (len(rgb_colors) - 1)
|
| 315 |
+
idx = int(segment)
|
| 316 |
+
local_progress = segment - idx
|
| 317 |
+
|
| 318 |
+
if idx >= len(rgb_colors) - 1:
|
| 319 |
+
r, g, b = rgb_colors[-1]
|
| 320 |
+
else:
|
| 321 |
+
c1, c2 = rgb_colors[idx], rgb_colors[idx + 1]
|
| 322 |
+
r = int(c1[0] + (c2[0] - c1[0]) * local_progress)
|
| 323 |
+
g = int(c1[1] + (c2[1] - c1[1]) * local_progress)
|
| 324 |
+
b = int(c1[2] + (c2[2] - c1[2]) * local_progress)
|
| 325 |
+
|
| 326 |
+
pil_img.putpixel((x, y), (r, g, b))
|
| 327 |
+
|
| 328 |
+
# Convert PIL to OpenCV format
|
| 329 |
+
background = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
|
| 330 |
+
return background
|
| 331 |
+
|
| 332 |
+
def replace_background_hq(frame, mask, background):
|
| 333 |
+
"""High-quality background replacement with edge feathering"""
|
| 334 |
+
# Resize background to match frame exactly
|
| 335 |
+
background = cv2.resize(background, (frame.shape[1], frame.shape[0]), interpolation=cv2.INTER_LANCZOS4)
|
| 336 |
+
|
| 337 |
+
# Apply edge feathering for smooth transitions
|
| 338 |
+
mask_float = mask.astype(np.float32) / 255.0
|
| 339 |
+
|
| 340 |
+
# Create feathered mask
|
| 341 |
+
feather_radius = 3
|
| 342 |
+
mask_feathered = cv2.GaussianBlur(mask_float, (feather_radius*2+1, feather_radius*2+1), feather_radius/3)
|
| 343 |
+
|
| 344 |
+
# Expand mask to 3 channels
|
| 345 |
+
mask_3channel = np.stack([mask_feathered] * 3, axis=2)
|
| 346 |
+
|
| 347 |
+
# High-quality compositing with gamma correction
|
| 348 |
+
frame_linear = np.power(frame.astype(np.float32) / 255.0, 2.2)
|
| 349 |
+
background_linear = np.power(background.astype(np.float32) / 255.0, 2.2)
|
| 350 |
+
|
| 351 |
+
# Composite in linear space
|
| 352 |
+
result_linear = frame_linear * mask_3channel + background_linear * (1 - mask_3channel)
|
| 353 |
+
|
| 354 |
+
# Convert back to sRGB
|
| 355 |
+
result = np.power(result_linear, 1/2.2) * 255.0
|
| 356 |
+
result = np.clip(result, 0, 255).astype(np.uint8)
|
| 357 |
+
|
| 358 |
+
return result
|
| 359 |
+
|
| 360 |
+
def process_video_hq(video_path, background_choice, custom_background_path, progress=gr.Progress()):
|
| 361 |
+
"""High-quality video processing with professional backgrounds"""
|
| 362 |
+
if not models_loaded:
|
| 363 |
+
return None, "β Models not loaded. Click 'Load Models' first."
|
| 364 |
+
|
| 365 |
+
try:
|
| 366 |
+
progress(0, desc="π¬ Initializing high-quality processing...")
|
| 367 |
+
|
| 368 |
+
# Read video with quality settings
|
| 369 |
+
cap = cv2.VideoCapture(video_path)
|
| 370 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 371 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 372 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 373 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 374 |
+
|
| 375 |
+
# Prepare background
|
| 376 |
+
if background_choice == "custom" and custom_background_path:
|
| 377 |
+
# Use uploaded image
|
| 378 |
+
background = cv2.imread(custom_background_path)
|
| 379 |
+
if background is None:
|
| 380 |
+
return None, "β Could not read custom background image"
|
| 381 |
+
background_name = "Custom Image"
|
| 382 |
+
else:
|
| 383 |
+
# Use professional background
|
| 384 |
+
if background_choice in PROFESSIONAL_BACKGROUNDS:
|
| 385 |
+
bg_config = PROFESSIONAL_BACKGROUNDS[background_choice]
|
| 386 |
+
background = create_professional_background(bg_config, frame_width, frame_height)
|
| 387 |
+
background_name = bg_config["name"]
|
| 388 |
+
else:
|
| 389 |
+
return None, "β Invalid background selection"
|
| 390 |
+
|
| 391 |
+
# Setup high-quality output video
|
| 392 |
+
output_path = "/tmp/processed_video_hq.mp4"
|
| 393 |
+
# Use high-quality codec
|
| 394 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 395 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (frame_width, frame_height))
|
| 396 |
+
|
| 397 |
+
progress(0.1, desc=f"π¨ Using {background_name} background...")
|
| 398 |
+
|
| 399 |
+
# Process each frame with quality optimizations
|
| 400 |
+
frame_count = 0
|
| 401 |
+
while True:
|
| 402 |
+
ret, frame = cap.read()
|
| 403 |
+
if not ret:
|
| 404 |
+
break
|
| 405 |
+
|
| 406 |
+
# Update progress
|
| 407 |
+
progress_pct = 0.1 + (frame_count / total_frames) * 0.8
|
| 408 |
+
progress(progress_pct, desc=f"β¨ Processing frame {frame_count + 1}/{total_frames} (High Quality)")
|
| 409 |
+
|
| 410 |
+
# High-quality person segmentation
|
| 411 |
+
mask = segment_person_hq(frame)
|
| 412 |
+
|
| 413 |
+
# Cinema-quality mask refinement
|
| 414 |
+
refined_mask = refine_mask_hq(frame, mask)
|
| 415 |
+
|
| 416 |
+
# High-quality background replacement
|
| 417 |
+
result_frame = replace_background_hq(frame, refined_mask, background)
|
| 418 |
+
|
| 419 |
+
# Write frame
|
| 420 |
+
out.write(result_frame)
|
| 421 |
+
frame_count += 1
|
| 422 |
+
|
| 423 |
+
cap.release()
|
| 424 |
+
out.release()
|
| 425 |
+
|
| 426 |
+
progress(0.9, desc="π΅ Adding high-quality audio...")
|
| 427 |
+
|
| 428 |
+
# Add audio back with high quality settings
|
| 429 |
+
final_output = "/tmp/final_output_hq.mp4"
|
| 430 |
+
audio_cmd = f'ffmpeg -y -i {output_path} -i {video_path} -c:v libx264 -crf 18 -preset slow -c:a aac -b:a 192k -map 0:v:0 -map 1:a:0? -shortest {final_output}'
|
| 431 |
+
os.system(audio_cmd)
|
| 432 |
+
|
| 433 |
+
# Save to MyAvatar/My Videos
|
| 434 |
+
myavatar_path = "/tmp/MyAvatar/My_Videos/"
|
| 435 |
+
os.makedirs(myavatar_path, exist_ok=True)
|
| 436 |
+
|
| 437 |
+
import shutil
|
| 438 |
+
import time
|
| 439 |
+
saved_filename = f"hq_background_replaced_{int(time.time())}.mp4"
|
| 440 |
+
saved_path = os.path.join(myavatar_path, saved_filename)
|
| 441 |
+
shutil.copy2(final_output, saved_path)
|
| 442 |
+
|
| 443 |
+
progress(1.0, desc="β
High-quality processing complete!")
|
| 444 |
+
|
| 445 |
+
return final_output, f"β
High-Quality Success!\nπ¬ Background: {background_name}\nπ Saved: MyAvatar/My Videos/{saved_filename}\nπ― Quality: Cinema-grade with SAM2 + MatAnyone"
|
| 446 |
+
|
| 447 |
+
except Exception as e:
|
| 448 |
+
return None, f"β Error: {str(e)}"
|
| 449 |
+
|
| 450 |
+
def get_model_status():
|
| 451 |
+
"""Get current model loading status"""
|
| 452 |
+
if models_loaded:
|
| 453 |
+
gpu_info = f" (GPU: {torch.cuda.get_device_name(0)})" if torch.cuda.is_available() else " (CPU)"
|
| 454 |
+
return f"β
High-quality models loaded{gpu_info}"
|
| 455 |
+
else:
|
| 456 |
+
return "β³ Models not loaded. Click 'Load Models' for cinema-quality processing."
|
| 457 |
+
|
| 458 |
+
def create_interface():
|
| 459 |
+
"""Create enhanced Gradio interface with professional backgrounds"""
|
| 460 |
+
|
| 461 |
+
# Create background choices
|
| 462 |
+
bg_choices = ["custom"] + list(PROFESSIONAL_BACKGROUNDS.keys())
|
| 463 |
+
bg_labels = ["π· Custom Image"] + [f"π¨ {config['name']}" for config in PROFESSIONAL_BACKGROUNDS.values()]
|
| 464 |
+
bg_dropdown_choices = list(zip(bg_labels, bg_choices))
|
| 465 |
+
|
| 466 |
+
with gr.Blocks(title="High-Quality Video Background Replacement", theme=gr.themes.Soft()) as demo:
|
| 467 |
+
gr.Markdown("# π¬ Cinema-Quality Video Background Replacement")
|
| 468 |
+
gr.Markdown("**Professional background replacement using SAM2 + MatAnyone AI models**")
|
| 469 |
+
|
| 470 |
+
with gr.Row():
|
| 471 |
+
with gr.Column(scale=1):
|
| 472 |
+
gr.Markdown("### π₯ Input")
|
| 473 |
+
video_input = gr.Video(label="π₯ Upload Video (MP4, MOV, AVI)")
|
| 474 |
+
|
| 475 |
+
gr.Markdown("### π¨ Background Selection")
|
| 476 |
+
background_choice = gr.Dropdown(
|
| 477 |
+
choices=bg_dropdown_choices,
|
| 478 |
+
value="office_modern",
|
| 479 |
+
label="Choose Background Type",
|
| 480 |
+
info="Select professional background or upload custom image"
|
| 481 |
+
)
|
| 482 |
+
|
| 483 |
+
custom_background = gr.Image(
|
| 484 |
+
label="π· Custom Background Image",
|
| 485 |
+
type="filepath",
|
| 486 |
+
visible=False,
|
| 487 |
+
info="Upload your own background image (will be resized to match video)"
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
# Show/hide custom background based on selection
|
| 491 |
+
def toggle_custom_bg(choice):
|
| 492 |
+
return gr.update(visible=(choice == "custom"))
|
| 493 |
+
|
| 494 |
+
background_choice.change(
|
| 495 |
+
fn=toggle_custom_bg,
|
| 496 |
+
inputs=background_choice,
|
| 497 |
+
outputs=custom_background
|
| 498 |
+
)
|
| 499 |
+
|
| 500 |
+
with gr.Row():
|
| 501 |
+
load_models_btn = gr.Button("π Load High-Quality Models", variant="secondary", size="lg")
|
| 502 |
+
process_btn = gr.Button("β¨ Process with Cinema Quality", variant="primary", size="lg")
|
| 503 |
+
|
| 504 |
+
status_text = gr.Textbox(
|
| 505 |
+
label="π§ System Status",
|
| 506 |
+
value=get_model_status(),
|
| 507 |
+
interactive=False,
|
| 508 |
+
lines=2
|
| 509 |
+
)
|
| 510 |
+
|
| 511 |
+
with gr.Column(scale=1):
|
| 512 |
+
gr.Markdown("### π€ High-Quality Output")
|
| 513 |
+
video_output = gr.Video(label="π¬ Processed Video", height=400)
|
| 514 |
+
result_text = gr.Textbox(
|
| 515 |
+
label="π Processing Results",
|
| 516 |
+
interactive=False,
|
| 517 |
+
lines=4
|
| 518 |
+
)
|
| 519 |
+
|
| 520 |
+
gr.Markdown("### π¨ Professional Backgrounds Available")
|
| 521 |
+
bg_preview_html = "<div style='display: grid; grid-template-columns: repeat(2, 1fr); gap: 10px; padding: 10px;'>"
|
| 522 |
+
for key, config in PROFESSIONAL_BACKGROUNDS.items():
|
| 523 |
+
colors_display = " β ".join(config["colors"][:2])
|
| 524 |
+
bg_preview_html += f"""
|
| 525 |
+
<div style='padding: 8px; border: 1px solid #ddd; border-radius: 8px; text-align: center; background: linear-gradient(45deg, {config["colors"][0]}, {config["colors"][-1]});'>
|
| 526 |
+
<strong style='color: white; text-shadow: 1px 1px 2px rgba(0,0,0,0.7);'>{config["name"]}</strong>
|
| 527 |
+
</div>
|
| 528 |
+
"""
|
| 529 |
+
bg_preview_html += "</div>"
|
| 530 |
+
gr.HTML(bg_preview_html)
|
| 531 |
+
|
| 532 |
+
# Event handlers
|
| 533 |
+
load_models_btn.click(
|
| 534 |
+
fn=download_and_setup_models,
|
| 535 |
+
outputs=status_text
|
| 536 |
+
)
|
| 537 |
+
|
| 538 |
+
process_btn.click(
|
| 539 |
+
fn=process_video_hq,
|
| 540 |
+
inputs=[video_input, background_choice, custom_background],
|
| 541 |
+
outputs=[video_output, result_text]
|
| 542 |
+
)
|
| 543 |
+
|
| 544 |
+
# Info section
|
| 545 |
+
with gr.Accordion("βΉοΈ Quality & Features", open=False):
|
| 546 |
+
gr.Markdown("""
|
| 547 |
+
### π Cinema-Quality Features:
|
| 548 |
+
- **π€ SAM2 Large Model**: Meta's most advanced segmentation
|
| 549 |
+
- **π¨ MatAnyone**: CVPR 2025 professional matting
|
| 550 |
+
- **β¨ Edge Feathering**: Smooth, natural transitions
|
| 551 |
+
- **π¬ Gamma Correction**: Professional color compositing
|
| 552 |
+
- **π΅ High-Quality Audio**: 192kbps AAC preservation
|
| 553 |
+
- **πΊ H.264 Codec**: CRF 18 for broadcast quality
|
| 554 |
+
|
| 555 |
+
### π¨ Professional Backgrounds:
|
| 556 |
+
- **Office Environments**: Modern, Executive styles
|
| 557 |
+
- **Studio Backdrops**: Broadcast-quality gradients
|
| 558 |
+
- **Creative Themes**: Artistic color combinations
|
| 559 |
+
- **Custom Images**: Upload your own backgrounds
|
| 560 |
+
|
| 561 |
+
### πΎ Output:
|
| 562 |
+
- Saved to: **MyAvatar/My Videos/**
|
| 563 |
+
- Format: **MP4 (H.264)**
|
| 564 |
+
- Quality: **Cinema-grade**
|
| 565 |
+
""")
|
| 566 |
+
|
| 567 |
+
return demo
|
| 568 |
+
|
| 569 |
+
if __name__ == "__main__":
|
| 570 |
+
print("π¬ Starting Cinema-Quality Video Background Replacement...")
|
| 571 |
+
|
| 572 |
+
# Create and launch interface
|
| 573 |
+
demo = create_interface()
|
| 574 |
+
demo.launch(
|
| 575 |
+
server_name="0.0.0.0",
|
| 576 |
+
server_port=7860,
|
| 577 |
+
share=True,
|
| 578 |
+
show_error=True
|
| 579 |
+
)
|