Update models/loaders/model_loader.py
Browse files- models/loaders/model_loader.py +152 -505
models/loaders/model_loader.py
CHANGED
|
@@ -1,11 +1,7 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
Model Loader
|
| 4 |
-
|
| 5 |
-
- Correct MatAnyOne loader via official InferenceCore (no transformers)
|
| 6 |
-
- Clean progress reporting, cleanup, and diagnostics
|
| 7 |
-
- NEW: Global MatAnyOne step/process shape guard to prevent 5D tensors
|
| 8 |
-
- UPDATED: Enhanced MatAnyone wrapper support for component masks
|
| 9 |
"""
|
| 10 |
|
| 11 |
from __future__ import annotations
|
|
@@ -14,8 +10,6 @@
|
|
| 14 |
import gc
|
| 15 |
import time
|
| 16 |
import logging
|
| 17 |
-
import traceback
|
| 18 |
-
from pathlib import Path
|
| 19 |
from typing import Optional, Dict, Any, Tuple, Callable
|
| 20 |
|
| 21 |
import torch
|
|
@@ -24,14 +18,17 @@
|
|
| 24 |
from utils.hardware.device_manager import DeviceManager
|
| 25 |
from utils.system.memory_manager import MemoryManager
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
logger = logging.getLogger(__name__)
|
| 28 |
|
| 29 |
|
| 30 |
-
# ------------------------------
|
| 31 |
-
# Data wrapper
|
| 32 |
-
# ------------------------------
|
| 33 |
class LoadedModel:
|
| 34 |
-
|
|
|
|
|
|
|
| 35 |
self.model = model
|
| 36 |
self.model_id = model_id
|
| 37 |
self.load_time = load_time
|
|
@@ -48,22 +45,23 @@ def to_dict(self) -> Dict[str, Any]:
|
|
| 48 |
}
|
| 49 |
|
| 50 |
|
| 51 |
-
# ------------------------------
|
| 52 |
-
# Loader
|
| 53 |
-
# ------------------------------
|
| 54 |
class ModelLoader:
|
|
|
|
|
|
|
| 55 |
def __init__(self, device_mgr: DeviceManager, memory_mgr: MemoryManager):
|
| 56 |
self.device_manager = device_mgr
|
| 57 |
self.memory_manager = memory_mgr
|
| 58 |
-
self.device = self.device_manager.get_optimal_device()
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
self.sam2_predictor: Optional[LoadedModel] = None
|
| 61 |
self.matanyone_model: Optional[LoadedModel] = None
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
self.checkpoints_dir = "./checkpoints"
|
| 65 |
-
os.makedirs(self.checkpoints_dir, exist_ok=True)
|
| 66 |
-
|
| 67 |
self.loading_stats = {
|
| 68 |
"sam2_load_time": 0.0,
|
| 69 |
"matanyone_load_time": 0.0,
|
|
@@ -71,85 +69,114 @@ def __init__(self, device_mgr: DeviceManager, memory_mgr: MemoryManager):
|
|
| 71 |
"models_loaded": False,
|
| 72 |
"loading_attempts": 0,
|
| 73 |
}
|
| 74 |
-
|
| 75 |
logger.info(f"ModelLoader initialized for device: {self.device}")
|
| 76 |
|
| 77 |
-
# ---------- Public API ----------
|
| 78 |
-
|
| 79 |
def load_all_models(
|
| 80 |
-
self,
|
|
|
|
|
|
|
| 81 |
) -> Tuple[Optional[LoadedModel], Optional[LoadedModel]]:
|
| 82 |
"""
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
"""
|
| 85 |
start_time = time.time()
|
| 86 |
self.loading_stats["loading_attempts"] += 1
|
| 87 |
-
|
| 88 |
try:
|
| 89 |
logger.info("Starting model loading process...")
|
| 90 |
if progress_callback:
|
| 91 |
progress_callback(0.0, "Initializing model loading...")
|
| 92 |
-
|
|
|
|
| 93 |
self._cleanup_models()
|
| 94 |
-
|
| 95 |
-
#
|
| 96 |
-
logger.info("Loading SAM2 predictor...")
|
| 97 |
if progress_callback:
|
| 98 |
-
progress_callback(0.1, "Loading SAM2
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
else:
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
# Early exit if cancelled
|
| 109 |
-
if cancel_event is not None and getattr(cancel_event, "is_set", lambda: False)():
|
| 110 |
if progress_callback:
|
| 111 |
progress_callback(1.0, "Model loading cancelled")
|
| 112 |
return self.sam2_predictor, None
|
| 113 |
-
|
| 114 |
-
#
|
| 115 |
-
logger.info("Loading MatAnyOne model...")
|
| 116 |
if progress_callback:
|
| 117 |
-
progress_callback(0.6, "Loading
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
else:
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
# ---- Final status ----
|
| 128 |
total_time = time.time() - start_time
|
| 129 |
self.loading_stats["total_load_time"] = total_time
|
| 130 |
self.loading_stats["models_loaded"] = bool(self.sam2_predictor or self.matanyone_model)
|
| 131 |
-
|
|
|
|
| 132 |
if progress_callback:
|
| 133 |
if self.loading_stats["models_loaded"]:
|
| 134 |
-
progress_callback(1.0, "Models loaded
|
| 135 |
else:
|
| 136 |
-
progress_callback(1.0, "
|
| 137 |
-
|
| 138 |
logger.info(f"Model loading completed in {total_time:.2f}s")
|
| 139 |
return self.sam2_predictor, self.matanyone_model
|
| 140 |
-
|
| 141 |
except Exception as e:
|
| 142 |
error_msg = f"Model loading failed: {str(e)}"
|
| 143 |
-
logger.error(
|
| 144 |
self._cleanup_models()
|
| 145 |
self.loading_stats["models_loaded"] = False
|
|
|
|
| 146 |
if progress_callback:
|
| 147 |
progress_callback(1.0, f"Error: {error_msg}")
|
|
|
|
| 148 |
return None, None
|
| 149 |
|
| 150 |
-
def reload_models(
|
| 151 |
-
|
| 152 |
-
|
|
|
|
|
|
|
| 153 |
logger.info("Reloading models...")
|
| 154 |
self._cleanup_models()
|
| 155 |
self.loading_stats["models_loaded"] = False
|
|
@@ -157,486 +184,106 @@ def reload_models(self, progress_callback: Optional[Callable[[float, str], None]
|
|
| 157 |
|
| 158 |
@property
|
| 159 |
def models_ready(self) -> bool:
|
|
|
|
| 160 |
return self.sam2_predictor is not None or self.matanyone_model is not None
|
| 161 |
|
| 162 |
def get_sam2(self):
|
| 163 |
-
|
|
|
|
| 164 |
|
| 165 |
def get_matanyone(self):
|
| 166 |
-
"""Get MatAnyone processor
|
| 167 |
-
if self.matanyone_model
|
| 168 |
-
return None
|
| 169 |
-
|
| 170 |
-
# Check if we should use the enhanced wrapper
|
| 171 |
-
try:
|
| 172 |
-
from app_config import get_config
|
| 173 |
-
config = get_config()
|
| 174 |
-
|
| 175 |
-
if config.matanyone_enabled and (config.use_component_masks or
|
| 176 |
-
config.matanyone_edge_enhancement or
|
| 177 |
-
config.matanyone_hair_refinement):
|
| 178 |
-
# Use enhanced wrapper for advanced features
|
| 179 |
-
try:
|
| 180 |
-
from models.wrappers.matanyone_wrapper import MatAnyOneWrapper
|
| 181 |
-
|
| 182 |
-
if self._matanyone_wrapper is None:
|
| 183 |
-
self._matanyone_wrapper = MatAnyOneWrapper(
|
| 184 |
-
self.matanyone_model.model,
|
| 185 |
-
device=self.device,
|
| 186 |
-
config=config.get_matanyone_config()
|
| 187 |
-
)
|
| 188 |
-
logger.info("Using enhanced MatAnyone wrapper with component support")
|
| 189 |
-
return self._matanyone_wrapper
|
| 190 |
-
except ImportError as e:
|
| 191 |
-
logger.warning(f"Enhanced MatAnyone wrapper not available: {e}")
|
| 192 |
-
except Exception as e:
|
| 193 |
-
logger.error(f"Failed to initialize enhanced MatAnyone wrapper: {e}")
|
| 194 |
-
|
| 195 |
-
except Exception as e:
|
| 196 |
-
logger.debug(f"Could not check for enhanced wrapper configuration: {e}")
|
| 197 |
-
|
| 198 |
-
# Return raw model for basic usage
|
| 199 |
-
return self.matanyone_model.model if self.matanyone_model is not None else None
|
| 200 |
|
| 201 |
def validate_models(self) -> bool:
|
|
|
|
| 202 |
try:
|
| 203 |
-
|
| 204 |
-
|
|
|
|
| 205 |
model = self.sam2_predictor.model
|
| 206 |
-
if hasattr(model, "set_image")
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
except Exception as e:
|
| 212 |
logger.error(f"Model validation failed: {e}")
|
| 213 |
return False
|
| 214 |
|
| 215 |
def get_model_info(self) -> Dict[str, Any]:
|
|
|
|
| 216 |
info = {
|
| 217 |
"models_loaded": self.loading_stats["models_loaded"],
|
| 218 |
-
"sam2_loaded": self.sam2_predictor is not None,
|
| 219 |
-
"matanyone_loaded": self.matanyone_model is not None,
|
| 220 |
"device": str(self.device),
|
| 221 |
"loading_stats": self.loading_stats.copy(),
|
| 222 |
}
|
| 223 |
-
if self.sam2_predictor is not None:
|
| 224 |
-
info["sam2_model_type"] = type(self.sam2_predictor.model).__name__
|
| 225 |
-
info["sam2_metadata"] = self.sam2_predictor.to_dict()
|
| 226 |
-
if self.matanyone_model is not None:
|
| 227 |
-
info["matanyone_model_type"] = type(self.matanyone_model.model).__name__
|
| 228 |
-
info["matanyone_metadata"] = self.matanyone_model.to_dict()
|
| 229 |
|
| 230 |
-
# Add
|
| 231 |
-
info["
|
|
|
|
|
|
|
|
|
|
| 232 |
|
| 233 |
return info
|
| 234 |
|
| 235 |
def get_load_summary(self) -> str:
|
|
|
|
| 236 |
if not self.loading_stats["models_loaded"]:
|
| 237 |
-
return "
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
if self.sam2_predictor:
|
| 243 |
-
|
|
|
|
| 244 |
else:
|
| 245 |
-
|
|
|
|
| 246 |
if self.matanyone_model:
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
summary += " └─ Enhanced wrapper active\n"
|
| 250 |
else:
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
|
|
|
|
|
|
| 254 |
|
| 255 |
def cleanup(self):
|
|
|
|
| 256 |
self._cleanup_models()
|
| 257 |
logger.info("ModelLoader cleanup completed")
|
| 258 |
|
| 259 |
-
# ---------- Internal: SAM2 ----------
|
| 260 |
-
|
| 261 |
-
def _load_sam2_predictor(self, progress_callback: Optional[Callable[[float, str], None]] = None) -> Optional[LoadedModel]:
|
| 262 |
-
"""
|
| 263 |
-
Try multiple SAM2 loading strategies: official -> transformers -> dummy fallback.
|
| 264 |
-
"""
|
| 265 |
-
# Choose model size heuristically
|
| 266 |
-
model_size = "large"
|
| 267 |
-
try:
|
| 268 |
-
if hasattr(self.device_manager, "get_device_memory_gb"):
|
| 269 |
-
memory_gb = self.device_manager.get_device_memory_gb()
|
| 270 |
-
if memory_gb < 4:
|
| 271 |
-
model_size = "tiny"
|
| 272 |
-
elif memory_gb < 8:
|
| 273 |
-
model_size = "small"
|
| 274 |
-
elif memory_gb < 12:
|
| 275 |
-
model_size = "base"
|
| 276 |
-
logger.info(f"Selected SAM2 {model_size} based on {memory_gb}GB VRAM")
|
| 277 |
-
except Exception as e:
|
| 278 |
-
logger.warning(f"Could not determine device memory: {e}")
|
| 279 |
-
model_size = "tiny"
|
| 280 |
-
|
| 281 |
-
model_map = {
|
| 282 |
-
"tiny": "facebook/sam2.1-hiera-tiny",
|
| 283 |
-
"small": "facebook/sam2.1-hiera-small",
|
| 284 |
-
"base": "facebook/sam2.1-hiera-base-plus",
|
| 285 |
-
"large": "facebook/sam2.1-hiera-large",
|
| 286 |
-
}
|
| 287 |
-
model_id = model_map.get(model_size, model_map["tiny"])
|
| 288 |
-
|
| 289 |
-
if progress_callback:
|
| 290 |
-
progress_callback(0.3, f"Loading SAM2 ({model_size})...")
|
| 291 |
-
|
| 292 |
-
methods = [
|
| 293 |
-
("official", self._try_load_sam2_official, model_id),
|
| 294 |
-
("direct", self._try_load_sam2_direct, model_id),
|
| 295 |
-
("manual", self._try_load_sam2_manual, model_id),
|
| 296 |
-
]
|
| 297 |
-
|
| 298 |
-
for name, fn, mid in methods:
|
| 299 |
-
try:
|
| 300 |
-
logger.info(f"Attempting SAM2 load via {name} method ({mid})...")
|
| 301 |
-
result = fn(mid)
|
| 302 |
-
if result is not None:
|
| 303 |
-
logger.info(f"SAM2 loaded successfully via {name} method")
|
| 304 |
-
return result
|
| 305 |
-
except Exception as e:
|
| 306 |
-
logger.error(f"SAM2 {name} method failed: {e}")
|
| 307 |
-
logger.debug(traceback.format_exc())
|
| 308 |
-
continue
|
| 309 |
-
|
| 310 |
-
logger.error("All SAM2 loading methods failed")
|
| 311 |
-
return None
|
| 312 |
-
|
| 313 |
-
def _try_load_sam2_official(self, model_id: str) -> Optional[LoadedModel]:
|
| 314 |
-
"""
|
| 315 |
-
Official predictor path (Meta's SAM2ImagePredictor).
|
| 316 |
-
"""
|
| 317 |
-
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 318 |
-
|
| 319 |
-
# Space-specific hub flags
|
| 320 |
-
os.environ["HF_HUB_DISABLE_SYMLINKS"] = "1"
|
| 321 |
-
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "0"
|
| 322 |
-
|
| 323 |
-
cache_dir = os.path.join(self.checkpoints_dir, "sam2_cache")
|
| 324 |
-
os.makedirs(cache_dir, exist_ok=True)
|
| 325 |
-
|
| 326 |
-
t0 = time.time()
|
| 327 |
-
predictor = SAM2ImagePredictor.from_pretrained(
|
| 328 |
-
model_id,
|
| 329 |
-
cache_dir=cache_dir,
|
| 330 |
-
local_files_only=False,
|
| 331 |
-
trust_remote_code=True,
|
| 332 |
-
)
|
| 333 |
-
if hasattr(predictor, "model"):
|
| 334 |
-
predictor.model = predictor.model.to(self.device)
|
| 335 |
-
t1 = time.time()
|
| 336 |
-
|
| 337 |
-
return LoadedModel(
|
| 338 |
-
model=predictor, model_id=model_id, load_time=t1 - t0, device=str(self.device), framework="sam2"
|
| 339 |
-
)
|
| 340 |
-
|
| 341 |
-
def _try_load_sam2_direct(self, model_id: str) -> Optional[LoadedModel]:
|
| 342 |
-
"""
|
| 343 |
-
Transformers AutoModel path (best-effort; API may vary).
|
| 344 |
-
"""
|
| 345 |
-
from transformers import AutoModel, AutoProcessor
|
| 346 |
-
|
| 347 |
-
t0 = time.time()
|
| 348 |
-
model = AutoModel.from_pretrained(
|
| 349 |
-
model_id,
|
| 350 |
-
trust_remote_code=True,
|
| 351 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 352 |
-
).to(self.device)
|
| 353 |
-
|
| 354 |
-
try:
|
| 355 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
| 356 |
-
except Exception:
|
| 357 |
-
processor = None
|
| 358 |
-
|
| 359 |
-
t1 = time.time()
|
| 360 |
-
|
| 361 |
-
class SAM2Wrapper:
|
| 362 |
-
def __init__(self, model, processor=None):
|
| 363 |
-
self.model = model
|
| 364 |
-
self.processor = processor
|
| 365 |
-
|
| 366 |
-
def set_image(self, image):
|
| 367 |
-
self.current_image = image
|
| 368 |
-
|
| 369 |
-
def predict(self, *args, **kwargs):
|
| 370 |
-
return self.model(*args, **kwargs)
|
| 371 |
-
|
| 372 |
-
wrapped = SAM2Wrapper(model, processor)
|
| 373 |
-
|
| 374 |
-
return LoadedModel(
|
| 375 |
-
model=wrapped,
|
| 376 |
-
model_id=model_id,
|
| 377 |
-
load_time=t1 - t0,
|
| 378 |
-
device=str(self.device),
|
| 379 |
-
framework="sam2-transformers",
|
| 380 |
-
)
|
| 381 |
-
|
| 382 |
-
def _try_load_sam2_manual(self, model_id: str) -> Optional[LoadedModel]:
|
| 383 |
-
"""
|
| 384 |
-
Dummy fallback that won't crash the app.
|
| 385 |
-
"""
|
| 386 |
-
class DummySAM2:
|
| 387 |
-
def __init__(self, device):
|
| 388 |
-
self.device = device
|
| 389 |
-
self.model = None
|
| 390 |
-
|
| 391 |
-
def set_image(self, image):
|
| 392 |
-
self.current_image = image
|
| 393 |
-
|
| 394 |
-
def predict(self, point_coords=None, point_labels=None, box=None, **kwargs):
|
| 395 |
-
import numpy as np
|
| 396 |
-
if hasattr(self, "current_image"):
|
| 397 |
-
h, w = self.current_image.shape[:2]
|
| 398 |
-
else:
|
| 399 |
-
h, w = 512, 512
|
| 400 |
-
return {
|
| 401 |
-
"masks": np.ones((1, h, w), dtype=np.float32),
|
| 402 |
-
"scores": np.array([0.5]),
|
| 403 |
-
"logits": np.ones((1, h, w), dtype=np.float32),
|
| 404 |
-
}
|
| 405 |
-
|
| 406 |
-
t0 = time.time()
|
| 407 |
-
dummy = DummySAM2(self.device)
|
| 408 |
-
t1 = time.time()
|
| 409 |
-
|
| 410 |
-
logger.warning("Using manual SAM2 fallback (limited functionality)")
|
| 411 |
-
return LoadedModel(
|
| 412 |
-
model=dummy, model_id=f"{model_id}-fallback", load_time=t1 - t0, device=str(self.device), framework="sam2-fallback"
|
| 413 |
-
)
|
| 414 |
-
|
| 415 |
-
# ---------- Internal: MatAnyOne ----------
|
| 416 |
-
|
| 417 |
-
def _load_matanyone(self, progress_callback: Optional[Callable[[float, str], None]] = None) -> Optional[LoadedModel]:
|
| 418 |
-
"""
|
| 419 |
-
Correct MatAnyOne loader using official package API.
|
| 420 |
-
"""
|
| 421 |
-
if progress_callback:
|
| 422 |
-
progress_callback(0.7, "Loading MatAnyOne (InferenceCore)...")
|
| 423 |
-
try:
|
| 424 |
-
return self._try_load_matanyone_official()
|
| 425 |
-
except Exception as e:
|
| 426 |
-
logger.error(f"MatAnyOne official loader failed: {e}")
|
| 427 |
-
logger.debug(traceback.format_exc())
|
| 428 |
-
logger.warning("Falling back to simple MatAnyOne placeholder.")
|
| 429 |
-
return self._try_load_matanyone_fallback()
|
| 430 |
-
|
| 431 |
-
def _try_load_matanyone_official(self) -> Optional[LoadedModel]:
|
| 432 |
-
"""
|
| 433 |
-
Official MatAnyOne via package's InferenceCore.
|
| 434 |
-
IMPORTANT: pass model id POSITIONALLY; do NOT use repo_id= or transformers.
|
| 435 |
-
Also: install a shape guard so every call is safe (no 5D tensors).
|
| 436 |
-
"""
|
| 437 |
-
from matanyone import InferenceCore
|
| 438 |
-
|
| 439 |
-
t0 = time.time()
|
| 440 |
-
processor = InferenceCore("PeiqingYang/MatAnyone")
|
| 441 |
-
|
| 442 |
-
# ------------------- BEGIN: GLOBAL SHAPE GUARD PATCH -------------------
|
| 443 |
-
try:
|
| 444 |
-
# Lazy import coercers; provide minimal fallbacks if missing.
|
| 445 |
-
try:
|
| 446 |
-
from utils.interop import (
|
| 447 |
-
ensure_image_nchw,
|
| 448 |
-
ensure_mask_for_matanyone,
|
| 449 |
-
log_shape,
|
| 450 |
-
)
|
| 451 |
-
except Exception as imp_err:
|
| 452 |
-
logger.warning(f"utils.interop not available ({imp_err}); using minimal inline coercers")
|
| 453 |
-
|
| 454 |
-
def log_shape(tag: str, t: torch.Tensor) -> None:
|
| 455 |
-
try:
|
| 456 |
-
mn = float(t.min()) if t.numel() else float("nan")
|
| 457 |
-
mx = float(t.max()) if t.numel() else float("nan")
|
| 458 |
-
print(f"[MatAny.guard] {tag}: shape={tuple(t.shape)} dtype={t.dtype} device={t.device} "
|
| 459 |
-
f"range=[{mn:.4f},{mx:.4f}]")
|
| 460 |
-
except Exception:
|
| 461 |
-
pass
|
| 462 |
-
|
| 463 |
-
def _to_float01(x: torch.Tensor) -> torch.Tensor:
|
| 464 |
-
x = x.to(torch.float32)
|
| 465 |
-
if x.max() > 1.0:
|
| 466 |
-
x = x / 255.0
|
| 467 |
-
return x.clamp_(0.0, 1.0)
|
| 468 |
-
|
| 469 |
-
def _squeeze_bt(x: torch.Tensor) -> torch.Tensor:
|
| 470 |
-
if x.ndim == 5:
|
| 471 |
-
# (B,T,C,H,W) → drop T if 1
|
| 472 |
-
if x.shape[1] == 1:
|
| 473 |
-
x = x.squeeze(1)
|
| 474 |
-
if x.ndim == 5 and x.shape[0] == 1:
|
| 475 |
-
x = x.squeeze(0)
|
| 476 |
-
if x.ndim == 4 and x.shape[0] == 1 and x.shape[1] == 1 and x.shape[-3] == 3:
|
| 477 |
-
x = x.squeeze(1)
|
| 478 |
-
return x
|
| 479 |
-
|
| 480 |
-
def ensure_image_nchw(img: torch.Tensor, device=self.device, want_batched: bool = True) -> torch.Tensor:
|
| 481 |
-
img = img.to(device)
|
| 482 |
-
img = _squeeze_bt(img)
|
| 483 |
-
if img.ndim == 3:
|
| 484 |
-
# CHW or HWC
|
| 485 |
-
if img.shape[0] in (1, 3):
|
| 486 |
-
chw = img
|
| 487 |
-
else:
|
| 488 |
-
chw = img.permute(2, 0, 1)
|
| 489 |
-
chw = _to_float01(chw.contiguous())
|
| 490 |
-
return chw.unsqueeze(0) if want_batched else chw
|
| 491 |
-
if img.ndim == 4:
|
| 492 |
-
N, A, B, C = img.shape
|
| 493 |
-
if A == 3:
|
| 494 |
-
nchw = img
|
| 495 |
-
elif C == 3:
|
| 496 |
-
nchw = img.permute(0, 3, 1, 2)
|
| 497 |
-
else:
|
| 498 |
-
raise AssertionError(f"Cannot infer channels in image: {tuple(img.shape)}")
|
| 499 |
-
nchw = _to_float01(nchw.contiguous())
|
| 500 |
-
return nchw if want_batched else nchw[0]
|
| 501 |
-
raise AssertionError(f"Bad image dims: {tuple(img.shape)}")
|
| 502 |
-
|
| 503 |
-
def ensure_mask_for_matanyone(mask: torch.Tensor, *, idx_mask: bool = False,
|
| 504 |
-
threshold: float = 0.5, keep_soft: bool = False,
|
| 505 |
-
device=self.device) -> torch.Tensor:
|
| 506 |
-
mask = mask.to(device)
|
| 507 |
-
mask = _squeeze_bt(mask)
|
| 508 |
-
if idx_mask:
|
| 509 |
-
if mask.ndim == 3:
|
| 510 |
-
if mask.shape[0] == 1:
|
| 511 |
-
idx = (mask[0] >= threshold).to(torch.long)
|
| 512 |
-
else:
|
| 513 |
-
idx = torch.argmax(mask, dim=0).to(torch.long)
|
| 514 |
-
idx = (idx > 0).to(torch.long)
|
| 515 |
-
elif mask.ndim == 2:
|
| 516 |
-
idx = (mask >= threshold).to(torch.long)
|
| 517 |
-
else:
|
| 518 |
-
raise AssertionError(f"idx mask must be 2D or 3D; got {tuple(mask.shape)}")
|
| 519 |
-
return idx
|
| 520 |
-
# channel mask
|
| 521 |
-
if mask.ndim == 2:
|
| 522 |
-
out = mask.unsqueeze(0)
|
| 523 |
-
elif mask.ndim == 3:
|
| 524 |
-
if mask.shape[0] == 1:
|
| 525 |
-
out = mask
|
| 526 |
-
else:
|
| 527 |
-
areas = mask.sum(dim=(-2, -1))
|
| 528 |
-
out = mask[areas.argmax():areas.argmax()+1]
|
| 529 |
-
else:
|
| 530 |
-
raise AssertionError(f"mask must be 2D/3D; got {tuple(mask.shape)}")
|
| 531 |
-
out = out.to(torch.float32)
|
| 532 |
-
if not keep_soft:
|
| 533 |
-
out = (out >= threshold).to(torch.float32)
|
| 534 |
-
return out.clamp_(0.0, 1.0).contiguous()
|
| 535 |
-
|
| 536 |
-
def _guarded_factory(core_obj, method_name: str):
|
| 537 |
-
core_step = getattr(core_obj, method_name)
|
| 538 |
-
|
| 539 |
-
def wrapped_step(*args, **kwargs):
|
| 540 |
-
# Extract image/mask/idx_mask whether passed positionally or by name
|
| 541 |
-
image = kwargs.get("image", None)
|
| 542 |
-
mask = kwargs.get("mask", None)
|
| 543 |
-
idx_mask = kwargs.get("idx_mask", kwargs.get("index_mask", False))
|
| 544 |
-
|
| 545 |
-
# Positional fallback guess: (image, mask, ...)
|
| 546 |
-
if image is None and len(args) >= 1:
|
| 547 |
-
image = args[0]
|
| 548 |
-
if mask is None and len(args) >= 2:
|
| 549 |
-
mask = args[1]
|
| 550 |
-
|
| 551 |
-
# Coerce shapes
|
| 552 |
-
img_nchw = ensure_image_nchw(image, device=self.device, want_batched=True)
|
| 553 |
-
log_shape("image_nchw", img_nchw)
|
| 554 |
-
|
| 555 |
-
if idx_mask:
|
| 556 |
-
m_fixed = ensure_mask_for_matanyone(mask, idx_mask=True, device=img_nchw.device)
|
| 557 |
-
log_shape("idx_hw", m_fixed)
|
| 558 |
-
else:
|
| 559 |
-
m_fixed = ensure_mask_for_matanyone(mask, idx_mask=False, threshold=0.5, keep_soft=False, device=img_nchw.device)
|
| 560 |
-
log_shape("mask_c_hw", m_fixed)
|
| 561 |
-
|
| 562 |
-
# Rebuild kwargs without duplicates
|
| 563 |
-
new_kwargs = dict(kwargs)
|
| 564 |
-
new_kwargs["idx_mask"] = bool(idx_mask)
|
| 565 |
-
new_kwargs["image"] = img_nchw[0] # common: CHW image
|
| 566 |
-
|
| 567 |
-
if idx_mask:
|
| 568 |
-
new_kwargs["mask"] = m_fixed # (H,W) long
|
| 569 |
-
else:
|
| 570 |
-
new_kwargs["mask"] = m_fixed # (1,H,W) float
|
| 571 |
-
|
| 572 |
-
# Try unbatched first, then batched fallback if needed
|
| 573 |
-
try:
|
| 574 |
-
return core_step(**new_kwargs)
|
| 575 |
-
except Exception as e1:
|
| 576 |
-
logger.debug(f"MatAnyOne step (CHW) failed, retrying batched NCHW: {e1}")
|
| 577 |
-
new_kwargs["image"] = img_nchw # (1,3,H,W)
|
| 578 |
-
try:
|
| 579 |
-
return core_step(**new_kwargs)
|
| 580 |
-
except Exception as e2:
|
| 581 |
-
logger.error(f"MatAnyOne guarded call failed (both modes). Last error: {e2}")
|
| 582 |
-
raise
|
| 583 |
-
|
| 584 |
-
return wrapped_step
|
| 585 |
-
|
| 586 |
-
if hasattr(processor, "step"):
|
| 587 |
-
processor.step = _guarded_factory(processor, "step")
|
| 588 |
-
logger.info("Patched MatAnyOne InferenceCore.step with shape guard")
|
| 589 |
-
if hasattr(processor, "process"):
|
| 590 |
-
processor.process = _guarded_factory(processor, "process")
|
| 591 |
-
logger.info("Patched MatAnyOne InferenceCore.process with shape guard")
|
| 592 |
-
except Exception as guard_err:
|
| 593 |
-
logger.warning(f"Could not install MatAnyOne guard: {guard_err}")
|
| 594 |
-
# -------------------- END: GLOBAL SHAPE GUARD PATCH --------------------
|
| 595 |
-
|
| 596 |
-
t1 = time.time()
|
| 597 |
-
|
| 598 |
-
return LoadedModel(
|
| 599 |
-
model=processor,
|
| 600 |
-
model_id="PeiqingYang/MatAnyone",
|
| 601 |
-
load_time=t1 - t0,
|
| 602 |
-
device=str(self.device),
|
| 603 |
-
framework="matanyone",
|
| 604 |
-
)
|
| 605 |
-
|
| 606 |
-
def _try_load_matanyone_fallback(self) -> Optional[LoadedModel]:
|
| 607 |
-
"""
|
| 608 |
-
Minimal placeholder that safely passes masks through.
|
| 609 |
-
"""
|
| 610 |
-
class FallbackMatAnyone:
|
| 611 |
-
def __init__(self, device):
|
| 612 |
-
self.device = device
|
| 613 |
-
|
| 614 |
-
def process(self, image, mask, **kwargs):
|
| 615 |
-
# Identity pass-through (keeps pipeline alive)
|
| 616 |
-
return mask
|
| 617 |
-
|
| 618 |
-
t0 = time.time()
|
| 619 |
-
model = FallbackMatAnyone(self.device)
|
| 620 |
-
t1 = time.time()
|
| 621 |
-
|
| 622 |
-
logger.warning("Using MatAnyOne fallback (limited functionality)")
|
| 623 |
-
return LoadedModel(
|
| 624 |
-
model=model, model_id="MatAnyone-fallback", load_time=t1 - t0, device=str(self.device), framework="matanyone-fallback"
|
| 625 |
-
)
|
| 626 |
-
|
| 627 |
-
# ---------- Internal: cleanup ----------
|
| 628 |
-
|
| 629 |
def _cleanup_models(self):
|
| 630 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 631 |
del self.sam2_predictor
|
| 632 |
self.sam2_predictor = None
|
| 633 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 634 |
del self.matanyone_model
|
| 635 |
self.matanyone_model = None
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
self._matanyone_wrapper = None
|
| 639 |
if torch.cuda.is_available():
|
| 640 |
torch.cuda.empty_cache()
|
|
|
|
|
|
|
| 641 |
gc.collect()
|
|
|
|
| 642 |
logger.debug("Model cleanup completed")
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
Unified Model Loader
|
| 4 |
+
Coordinates separate SAM2 and MatAnyone loaders for cleaner architecture
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
"""
|
| 6 |
|
| 7 |
from __future__ import annotations
|
|
|
|
| 10 |
import gc
|
| 11 |
import time
|
| 12 |
import logging
|
|
|
|
|
|
|
| 13 |
from typing import Optional, Dict, Any, Tuple, Callable
|
| 14 |
|
| 15 |
import torch
|
|
|
|
| 18 |
from utils.hardware.device_manager import DeviceManager
|
| 19 |
from utils.system.memory_manager import MemoryManager
|
| 20 |
|
| 21 |
+
# Import the specialized loaders
|
| 22 |
+
from models.loaders.sam2_loader import SAM2Loader
|
| 23 |
+
from models.loaders.matanyone_loader import MatAnyoneLoader
|
| 24 |
+
|
| 25 |
logger = logging.getLogger(__name__)
|
| 26 |
|
| 27 |
|
|
|
|
|
|
|
|
|
|
| 28 |
class LoadedModel:
|
| 29 |
+
"""Container for loaded model information"""
|
| 30 |
+
def __init__(self, model=None, model_id: str = "", load_time: float = 0.0,
|
| 31 |
+
device: str = "", framework: str = ""):
|
| 32 |
self.model = model
|
| 33 |
self.model_id = model_id
|
| 34 |
self.load_time = load_time
|
|
|
|
| 45 |
}
|
| 46 |
|
| 47 |
|
|
|
|
|
|
|
|
|
|
| 48 |
class ModelLoader:
|
| 49 |
+
"""Main model loader that coordinates SAM2 and MatAnyone loaders"""
|
| 50 |
+
|
| 51 |
def __init__(self, device_mgr: DeviceManager, memory_mgr: MemoryManager):
|
| 52 |
self.device_manager = device_mgr
|
| 53 |
self.memory_manager = memory_mgr
|
| 54 |
+
self.device = self.device_manager.get_optimal_device()
|
| 55 |
+
|
| 56 |
+
# Initialize specialized loaders
|
| 57 |
+
self.sam2_loader = SAM2Loader(device=str(self.device))
|
| 58 |
+
self.matanyone_loader = MatAnyoneLoader(device=str(self.device))
|
| 59 |
+
|
| 60 |
+
# Model storage
|
| 61 |
self.sam2_predictor: Optional[LoadedModel] = None
|
| 62 |
self.matanyone_model: Optional[LoadedModel] = None
|
| 63 |
+
|
| 64 |
+
# Statistics
|
|
|
|
|
|
|
|
|
|
| 65 |
self.loading_stats = {
|
| 66 |
"sam2_load_time": 0.0,
|
| 67 |
"matanyone_load_time": 0.0,
|
|
|
|
| 69 |
"models_loaded": False,
|
| 70 |
"loading_attempts": 0,
|
| 71 |
}
|
| 72 |
+
|
| 73 |
logger.info(f"ModelLoader initialized for device: {self.device}")
|
| 74 |
|
|
|
|
|
|
|
| 75 |
def load_all_models(
|
| 76 |
+
self,
|
| 77 |
+
progress_callback: Optional[Callable[[float, str], None]] = None,
|
| 78 |
+
cancel_event=None
|
| 79 |
) -> Tuple[Optional[LoadedModel], Optional[LoadedModel]]:
|
| 80 |
"""
|
| 81 |
+
Load all models using specialized loaders
|
| 82 |
+
|
| 83 |
+
Args:
|
| 84 |
+
progress_callback: Optional callback for progress updates
|
| 85 |
+
cancel_event: Optional threading.Event for cancellation
|
| 86 |
+
|
| 87 |
+
Returns:
|
| 88 |
+
Tuple of (sam2_model, matanyone_model)
|
| 89 |
"""
|
| 90 |
start_time = time.time()
|
| 91 |
self.loading_stats["loading_attempts"] += 1
|
| 92 |
+
|
| 93 |
try:
|
| 94 |
logger.info("Starting model loading process...")
|
| 95 |
if progress_callback:
|
| 96 |
progress_callback(0.0, "Initializing model loading...")
|
| 97 |
+
|
| 98 |
+
# Clean up any existing models
|
| 99 |
self._cleanup_models()
|
| 100 |
+
|
| 101 |
+
# Load SAM2
|
|
|
|
| 102 |
if progress_callback:
|
| 103 |
+
progress_callback(0.1, "Loading SAM2 model...")
|
| 104 |
+
|
| 105 |
+
sam2_start = time.time()
|
| 106 |
+
sam2_model = self.sam2_loader.load()
|
| 107 |
+
sam2_time = time.time() - sam2_start
|
| 108 |
+
|
| 109 |
+
if sam2_model:
|
| 110 |
+
self.sam2_predictor = LoadedModel(
|
| 111 |
+
model=sam2_model,
|
| 112 |
+
model_id=self.sam2_loader.model_id,
|
| 113 |
+
load_time=sam2_time,
|
| 114 |
+
device=str(self.device),
|
| 115 |
+
framework="sam2"
|
| 116 |
+
)
|
| 117 |
+
self.loading_stats["sam2_load_time"] = sam2_time
|
| 118 |
+
logger.info(f"SAM2 loaded in {sam2_time:.2f}s")
|
| 119 |
else:
|
| 120 |
+
logger.warning("SAM2 loading failed")
|
| 121 |
+
|
| 122 |
+
# Check for cancellation
|
| 123 |
+
if cancel_event and cancel_event.is_set():
|
|
|
|
|
|
|
| 124 |
if progress_callback:
|
| 125 |
progress_callback(1.0, "Model loading cancelled")
|
| 126 |
return self.sam2_predictor, None
|
| 127 |
+
|
| 128 |
+
# Load MatAnyone
|
|
|
|
| 129 |
if progress_callback:
|
| 130 |
+
progress_callback(0.6, "Loading MatAnyone model...")
|
| 131 |
+
|
| 132 |
+
matanyone_start = time.time()
|
| 133 |
+
matanyone_model = self.matanyone_loader.load()
|
| 134 |
+
matanyone_time = time.time() - matanyone_start
|
| 135 |
+
|
| 136 |
+
if matanyone_model:
|
| 137 |
+
self.matanyone_model = LoadedModel(
|
| 138 |
+
model=matanyone_model,
|
| 139 |
+
model_id=self.matanyone_loader.model_id,
|
| 140 |
+
load_time=matanyone_time,
|
| 141 |
+
device=str(self.device),
|
| 142 |
+
framework="matanyone"
|
| 143 |
+
)
|
| 144 |
+
self.loading_stats["matanyone_load_time"] = matanyone_time
|
| 145 |
+
logger.info(f"MatAnyone loaded in {matanyone_time:.2f}s")
|
| 146 |
else:
|
| 147 |
+
logger.warning("MatAnyone loading failed")
|
| 148 |
+
|
| 149 |
+
# Update statistics
|
|
|
|
|
|
|
| 150 |
total_time = time.time() - start_time
|
| 151 |
self.loading_stats["total_load_time"] = total_time
|
| 152 |
self.loading_stats["models_loaded"] = bool(self.sam2_predictor or self.matanyone_model)
|
| 153 |
+
|
| 154 |
+
# Final progress update
|
| 155 |
if progress_callback:
|
| 156 |
if self.loading_stats["models_loaded"]:
|
| 157 |
+
progress_callback(1.0, "Models loaded successfully")
|
| 158 |
else:
|
| 159 |
+
progress_callback(1.0, "Model loading completed with failures")
|
| 160 |
+
|
| 161 |
logger.info(f"Model loading completed in {total_time:.2f}s")
|
| 162 |
return self.sam2_predictor, self.matanyone_model
|
| 163 |
+
|
| 164 |
except Exception as e:
|
| 165 |
error_msg = f"Model loading failed: {str(e)}"
|
| 166 |
+
logger.error(error_msg)
|
| 167 |
self._cleanup_models()
|
| 168 |
self.loading_stats["models_loaded"] = False
|
| 169 |
+
|
| 170 |
if progress_callback:
|
| 171 |
progress_callback(1.0, f"Error: {error_msg}")
|
| 172 |
+
|
| 173 |
return None, None
|
| 174 |
|
| 175 |
+
def reload_models(
|
| 176 |
+
self,
|
| 177 |
+
progress_callback: Optional[Callable[[float, str], None]] = None
|
| 178 |
+
) -> Tuple[Optional[LoadedModel], Optional[LoadedModel]]:
|
| 179 |
+
"""Reload all models from scratch"""
|
| 180 |
logger.info("Reloading models...")
|
| 181 |
self._cleanup_models()
|
| 182 |
self.loading_stats["models_loaded"] = False
|
|
|
|
| 184 |
|
| 185 |
@property
|
| 186 |
def models_ready(self) -> bool:
|
| 187 |
+
"""Check if any models are loaded and ready"""
|
| 188 |
return self.sam2_predictor is not None or self.matanyone_model is not None
|
| 189 |
|
| 190 |
def get_sam2(self):
|
| 191 |
+
"""Get SAM2 predictor model"""
|
| 192 |
+
return self.sam2_predictor.model if self.sam2_predictor else None
|
| 193 |
|
| 194 |
def get_matanyone(self):
|
| 195 |
+
"""Get MatAnyone processor model"""
|
| 196 |
+
return self.matanyone_model.model if self.matanyone_model else None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
def validate_models(self) -> bool:
|
| 199 |
+
"""Validate that loaded models have expected interfaces"""
|
| 200 |
try:
|
| 201 |
+
valid = False
|
| 202 |
+
|
| 203 |
+
if self.sam2_predictor:
|
| 204 |
model = self.sam2_predictor.model
|
| 205 |
+
if hasattr(model, "set_image") and hasattr(model, "predict"):
|
| 206 |
+
valid = True
|
| 207 |
+
logger.info("SAM2 model validated")
|
| 208 |
+
|
| 209 |
+
if self.matanyone_model:
|
| 210 |
+
model = self.matanyone_model.model
|
| 211 |
+
if hasattr(model, "step") or hasattr(model, "process"):
|
| 212 |
+
valid = True
|
| 213 |
+
logger.info("MatAnyone model validated")
|
| 214 |
+
|
| 215 |
+
return valid
|
| 216 |
+
|
| 217 |
except Exception as e:
|
| 218 |
logger.error(f"Model validation failed: {e}")
|
| 219 |
return False
|
| 220 |
|
| 221 |
def get_model_info(self) -> Dict[str, Any]:
|
| 222 |
+
"""Get detailed information about loaded models"""
|
| 223 |
info = {
|
| 224 |
"models_loaded": self.loading_stats["models_loaded"],
|
|
|
|
|
|
|
| 225 |
"device": str(self.device),
|
| 226 |
"loading_stats": self.loading_stats.copy(),
|
| 227 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
|
| 229 |
+
# Add SAM2 info
|
| 230 |
+
info["sam2"] = self.sam2_loader.get_info() if self.sam2_loader else {}
|
| 231 |
+
|
| 232 |
+
# Add MatAnyone info
|
| 233 |
+
info["matanyone"] = self.matanyone_loader.get_info() if self.matanyone_loader else {}
|
| 234 |
|
| 235 |
return info
|
| 236 |
|
| 237 |
def get_load_summary(self) -> str:
|
| 238 |
+
"""Get human-readable loading summary"""
|
| 239 |
if not self.loading_stats["models_loaded"]:
|
| 240 |
+
return "No models loaded"
|
| 241 |
+
|
| 242 |
+
lines = []
|
| 243 |
+
lines.append(f"Models loaded in {self.loading_stats['total_load_time']:.1f}s")
|
| 244 |
+
|
| 245 |
if self.sam2_predictor:
|
| 246 |
+
lines.append(f"✓ SAM2: {self.loading_stats['sam2_load_time']:.1f}s")
|
| 247 |
+
lines.append(f" Model: {self.sam2_predictor.model_id}")
|
| 248 |
else:
|
| 249 |
+
lines.append("✗ SAM2: Failed to load")
|
| 250 |
+
|
| 251 |
if self.matanyone_model:
|
| 252 |
+
lines.append(f"✓ MatAnyone: {self.loading_stats['matanyone_load_time']:.1f}s")
|
| 253 |
+
lines.append(f" Model: {self.matanyone_model.model_id}")
|
|
|
|
| 254 |
else:
|
| 255 |
+
lines.append("✗ MatAnyone: Failed to load")
|
| 256 |
+
|
| 257 |
+
lines.append(f"Device: {self.device}")
|
| 258 |
+
|
| 259 |
+
return "\n".join(lines)
|
| 260 |
|
| 261 |
def cleanup(self):
|
| 262 |
+
"""Clean up all resources"""
|
| 263 |
self._cleanup_models()
|
| 264 |
logger.info("ModelLoader cleanup completed")
|
| 265 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
def _cleanup_models(self):
|
| 267 |
+
"""Internal cleanup of loaded models"""
|
| 268 |
+
# Clean up SAM2
|
| 269 |
+
if self.sam2_loader:
|
| 270 |
+
self.sam2_loader.cleanup()
|
| 271 |
+
if self.sam2_predictor:
|
| 272 |
del self.sam2_predictor
|
| 273 |
self.sam2_predictor = None
|
| 274 |
+
|
| 275 |
+
# Clean up MatAnyone
|
| 276 |
+
if self.matanyone_loader:
|
| 277 |
+
self.matanyone_loader.cleanup()
|
| 278 |
+
if self.matanyone_model:
|
| 279 |
del self.matanyone_model
|
| 280 |
self.matanyone_model = None
|
| 281 |
+
|
| 282 |
+
# Clear CUDA cache
|
|
|
|
| 283 |
if torch.cuda.is_available():
|
| 284 |
torch.cuda.empty_cache()
|
| 285 |
+
|
| 286 |
+
# Garbage collection
|
| 287 |
gc.collect()
|
| 288 |
+
|
| 289 |
logger.debug("Model cleanup completed")
|